A027710
Number of ways of placing n labeled balls into n unlabeled (but 3-colored) boxes.
Original entry on oeis.org
1, 3, 12, 57, 309, 1866, 12351, 88563, 681870, 5597643, 48718569, 447428856, 4318854429, 43666895343, 461101962108, 5072054649573, 57986312752497, 687610920335610, 8442056059773267, 107135148331162767, 1403300026585387686, 18946012544520590991
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Cf.
A000110,
A001861,
A056857,
A078937,
A078938,
A078940,
A078944,
A078945,
A129323,
A129324,
A129325,
A129327,
A129328,
A129329,
A129331,
A129332,
A129333,
A144180,
A144223,
A144263,
A189233,
A221159,
A221176.
-
b:= proc(n, m) option remember; `if`(n=0,
1, m*b(n-1, m)+3*b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27); # Alois P. Heinz, Aug 03 2021
-
colors=3; Array[ bell, 25 ]; For[ x=1, x<=25, x++, bell[ x ]=0 ]; bell[ 1 ]=colors;
Print[ "1 ", colors ]; For[ n=2, n<=25, n++, bell[ n ]=colors*bell[ n-1 ];
For[ i=1, n-i>1, i++, bell[ n-i ]=bell[ n-i ]*(n-i)+colors*bell[ n-i-1 ] ];
bellsum=0; For[ t=0, tVaclav Kotesovec, Mar 12 2014 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(3*(exp(x+x*O(x^n))-1)),n))
-
from sage.combinat.expnums import expnums2
expnums(22, 3) # Zerinvary Lajos, Jun 26 2008
Original entry on oeis.org
1, 5, 29, 189, 1357, 10589, 88909, 797085, 7583373, 76179037, 804638925, 8904557341, 102929260813, 1239432543709, 15511264432973, 201330839371421, 2705249923950477, 37567754666530141, 538369104335121869
Offset: 0
-
A078945 := proc(n) local a,b,i;
a := [seq(2,i=1..n)]; b := [seq(1,i=1..n)];
exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=4,%),66)) end:
seq(A078945(n),n=0..18); # Peter Luschny, Mar 30 2011
-
Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4+x), {x, 0, 20}], x]
Table[1/E^4/4*Sum[m^n/m!*4^m,{m,0,Infinity}],{n,1,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
Table[BellB[n+1, 4]/4, {n, 0, 20}] (* Vaclav Kotesovec, Jun 26 2022 *)
A078938
Cube of lower triangular matrix of A056857 (successive equalities in set partitions of n).
Original entry on oeis.org
1, 3, 1, 12, 6, 1, 57, 36, 9, 1, 309, 228, 72, 12, 1, 1866, 1545, 570, 120, 15, 1, 12351, 11196, 4635, 1140, 180, 18, 1, 88563, 86457, 39186, 10815, 1995, 252, 21, 1, 681870, 708504, 345828, 104496, 21630, 3192, 336, 24, 1, 5597643, 6136830, 3188268
Offset: 0
Rows:
1,
3,1,
12,6,1,
57,36,9,1,
309,228,72,12,1,
1866,1545,570,120,15,1,
12351,11196,4635,1140,180,18,1,
...
A343975
a(0) = 1; a(n) = 3 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 3, 15, 81, 489, 3237, 23211, 178707, 1467051, 12768345, 117263829, 1131901521, 11444383251, 120847326879, 1329303053391, 15197269729689, 180211641841353, 2212525627591533, 28078380387448515, 367782119667874083, 4965441830591976339, 69014083524412401873, 986364827548578356421
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 22}]
nmax = 22; A[] = 0; Do[A[x] = 1 + 3 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A355254
Expansion of e.g.f. exp(3*(exp(x) - 1) - x).
Original entry on oeis.org
1, 2, 7, 29, 142, 785, 4813, 32240, 233449, 1812161, 14980768, 131174939, 1211111629, 11745451658, 119255234371, 1264050651953, 13952113296766, 160006824960725, 1902825936046105, 23423342243273696, 297982102750214605, 3911917977005948453, 52926119656555824520
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[3*Exp[x]-3-x], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) - x))) \\ Michel Marcus, Dec 04 2023
A335975
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1) + x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 15, 1, 1, 5, 19, 47, 52, 1, 1, 6, 29, 103, 227, 203, 1, 1, 7, 41, 189, 622, 1215, 877, 1, 1, 8, 55, 311, 1357, 4117, 7107, 4140, 1, 1, 9, 71, 475, 2576, 10589, 29521, 44959, 21147, 1, 1, 10, 89, 687, 4447, 23031, 88909, 227290, 305091, 115975, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 5, 11, 19, 29, 41, 55, ...
1, 15, 47, 103, 189, 311, 475, ...
1, 52, 227, 622, 1357, 2576, 4447, ...
1, 203, 1215, 4117, 10589, 23031, 44683, ...
1, 877, 7107, 29521, 88909, 220341, 478207, ...
-
T[0, k_] := 1; T[n_, k_] := T[n - 1, k] + k * Sum[T[j, k] * Binomial[n - 1, j], {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Jul 03 2020 *)
A335981
Expansion of e.g.f. exp(3 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 4, 13, 31, 40, -23, -95, 490, 823, -8393, 3766, 174775, -658787, -2751404, 34033297, -55552037, -1170734432, 9362348365, 3277050925, -562286419646, 3848880970147, 8815342530739, -356804325202730, 2389771436686339, 8677476137729929, -302470260552857660
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[3 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 3 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
A367889
Expansion of e.g.f. exp(3*(exp(x) - 1) + 2*x).
Original entry on oeis.org
1, 5, 28, 173, 1165, 8468, 65923, 546197, 4791214, 44301143, 430158397, 4372004546, 46381674085, 512328076385, 5879362011436, 69958289731457, 861605015493073, 10965899141265500, 144018319806024991, 1949190279770578145, 27153595018237222774
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[3 (Exp[x] - 1) + 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + 3 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n, k] 2^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1) + 2*x))) \\ Michel Marcus, Dec 04 2023
A320432
Expansion of e.g.f. exp(3 * (1 - exp(x)) + x).
Original entry on oeis.org
1, -2, 1, 7, -8, -65, 37, 1024, 1351, -19001, -92618, 232513, 4087189, 9953926, -123909155, -1170342533, -676144160, 62840385619, 490129709977, -551829062288, -40624407525941, -305175084654341, 698633855671510, 34571970743398621, 278738497423756153, -663168571756087538
Offset: 0
-
m = 25; Range[0, m]! * CoefficientList[Series[Exp[3 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -3], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(3*(1-exp(x))+x)))
A367925
Expansion of e.g.f. 1/(4 - x - 3*exp(x)).
Original entry on oeis.org
1, 4, 35, 459, 8025, 175383, 4599507, 140728437, 4920898317, 193579534155, 8461200381111, 406815231899409, 21337866382711521, 1212458502624643719, 74193773349948903483, 4864422156647044661949, 340191752483516373189621, 25278147388666498256368323
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+3*sum(j=1, i, binomial(i, j)*v[i-j+1])); v;
Showing 1-10 of 10 results.
Comments