A291697
a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^n.
Original entry on oeis.org
1, 2, 8, 44, 256, 1512, 9056, 54896, 335872, 2069774, 12827888, 79875996, 499305472, 3131436856, 19694403520, 124165133424, 784478240768, 4965659813668, 31484486937512, 199923173603596, 1271192603065856, 8092551782518688, 51574780342740256, 329022223268286288, 2100934234342260736
Offset: 0
-
Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^n, {k, 0, n}], {x, 0, n}], {n, 0, 24}]
Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 24}]
(* Calculation of constant d: *) 1/r /. FindRoot[{s == QPochhammer[-r*s, r^2*s^2] / QPochhammer[r*s, r^2*s^2], QPochhammer[r*s, r^2*s^2] + QPochhammer[r*s, r^2*s^2]*((QPolyGamma[0, Log[-r*s]/Log[r^2*s^2], r^2*s^2] - QPolyGamma[0, Log[r*s]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2]) + 2*r^2*s^2*Derivative[0, 1][QPochhammer][r*s, r^2*s^2] == 2*r^2*s*Derivative[0, 1][QPochhammer][-r*s, r^2*s^2]}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
A292037
Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^k.
Original entry on oeis.org
1, 2, 2, 6, 10, 16, 30, 46, 78, 124, 196, 306, 470, 724, 1086, 1644, 2438, 3608, 5304, 7734, 11232, 16196, 23270, 33206, 47250, 66846, 94232, 132280, 184966, 257720, 357768, 495090, 682702, 938760, 1286668, 1758708, 2397012, 3258340, 4417570, 5974204, 8059824
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
A103261
Number of partitions of 2n into parts with 10 types c^1 c^2...C^10 of each part. The even parts appear with multiplicity 1 for each type . The odd parts occur with multiplicity 2 for each part.
Original entry on oeis.org
1, 20, 200, 1360, 7200, 32024, 125280, 443680, 1450240, 4435940, 12827888, 35346800, 93377920, 237675640, 585229760, 1398704736, 3253934080, 7386124520, 16392493800, 35634450320, 75992326592, 159199081600, 328027789600
Offset: 0
a(2)=200 because we have 10 types of 4, 45 ways of writing 4 in terms of ten of 2's only or ten of 11's only and 100 ways of writing 2's combined with 11's so the total number of ways of writing 4 is 200.
-
series(product(((1+x^k)*(1-x^(2*k)))^(10)/((1-x^k)*(1+x^(2*k)))^(10),k=1..100),x=0,100);
-
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^10,{k,0,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Aug 28 2015 *)
A210030
Expansion of phi(-q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function.
Original entry on oeis.org
1, -2, -2, 4, 6, -8, -12, 16, 22, -30, -40, 52, 68, -88, -112, 144, 182, -228, -286, 356, 440, -544, -668, 816, 996, -1210, -1464, 1768, 2128, -2552, -3056, 3648, 4342, -5160, -6116, 7232, 8538, -10056, -11820, 13872, 16248, -18996, -22176, 25844, 30068
Offset: 0
1 - 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 8*q^5 - 12*q^6 + 16*q^7 + 22*q^8 + ...
-
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 17 2017 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))}
A261647
Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^3.
Original entry on oeis.org
1, 6, 18, 44, 102, 216, 428, 816, 1494, 2650, 4584, 7740, 12804, 20808, 33264, 52400, 81462, 125100, 189966, 285516, 425016, 627040, 917436, 1331856, 1919332, 2746926, 3905784, 5519352, 7754064, 10833192, 15055216, 20817600, 28647414, 39241336, 53517060
Offset: 0
-
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]
A261648
Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^5.
Original entry on oeis.org
1, 10, 50, 180, 550, 1512, 3820, 9040, 20310, 43670, 90472, 181540, 354180, 674040, 1254640, 2289104, 4101430, 7228020, 12546030, 21473940, 36281656, 60565920, 99974140, 163297520, 264110180, 423211938, 672244600, 1059013320, 1655274320, 2568068120
Offset: 0
-
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^5,{k,0,nmax}],{x,0,nmax}],x]
A292038
Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^(2*k-1).
Original entry on oeis.org
1, 2, 2, 8, 14, 24, 52, 84, 158, 274, 464, 800, 1316, 2208, 3576, 5832, 9358, 14876, 23614, 36936, 57752, 89336, 137716, 210844, 321148, 486890, 733912, 1102336, 1646736, 2451464, 3632832, 5363988, 7889710, 11562712, 16888748, 24581904, 35670242, 51591096
Offset: 0
-
nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]
A101277
Number of partitions of 2n in which all odd parts occur with multiplicity 2. There is no restriction on the even parts.
Original entry on oeis.org
1, 2, 3, 6, 10, 16, 25, 38, 57, 84, 121, 172, 243, 338, 465, 636, 862, 1158, 1546, 2050, 2702, 3542, 4616, 5986, 7729, 9932, 12707, 16196, 20563, 26010, 32788, 41194, 51591, 64418, 80195, 99558, 123269, 152226, 187514, 230434, 282519, 345596, 421844, 513834
Offset: 0
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + 57*x^8 + ...
G.f. = 1/q + 2*q^11 + 3*q^23 + 6*q^35 + 10*q^47 + 16*q^59 + 25*q^71 + ...
E.g. 12 = 10 + 2 = 10 + 1 + 1 = 8 + 4 = 8 + 2 + 2 = 8 + 2 + 1 + 1 = 6 + 6 = 6 + 4 + 2 = 6 + 4 + 1 + 1 = 6 + 3 + 3 = 6 + 2 + 2 + 2 = 6 + 2 + 2 + 1 + 1 = 5 + 5 + 2 = 5 + 5 + 1 + 1 = 4 + 4 + 4 = 4 + 4 + 2 + 2 = 4 + 4 + 2 + 1 + 1 = 4 + 3 + 3 + 2 = 4 + 3 + 3 + 1 + 1 = 4 + 2 + 2 + 2 + 2 = 4 + 2 + 2 + 2 + 1 + 1 = 3 + 3 + 2 + 2 + 2 = 3 + 3 + 2 + 2 + 1 + 1 = 2 + 2 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 + 1 + 1.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Cristina Ballantine, Mircea Merca, Jacobi's Four and Eight Squares Theorems and Partitions into Distinct Parts, Mediterranean Journal of Mathematics (2019) Vol. 16, No. 2, 26.
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol, Ramanujan Theta Functions
-
series(product(1/((1-x^(2*k-1))^2*(1-x^(4*k))),k=1..100),x=0,100);
-
nmax=50; CoefficientList[Series[Product[1/((1-x^(2*k-1))^2 * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
(2/(QPochhammer[x] QPochhammer[-1, -x]) + O[x]^45)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, -x] QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Feb 10 2005 */
A208856
Partitions of n into parts not congruent to 0, +-4, +-6, +-10, 16 (mod 32).
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 72, 91, 114, 143, 178, 220, 272, 334, 408, 498, 605, 732, 884, 1064, 1276, 1528, 1824, 2171, 2580, 3058, 3616, 4269, 5028, 5910, 6936, 8124, 9498, 11088, 12922, 15034, 17468, 20264, 23472, 27154, 31369, 36189
Offset: 0
1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + 15*x^8 + 20*x^9 + ...
a(5) = 6 since 5 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 6 ways.
a(6) = 8 since 5 + 1 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 in 8 ways.
-
A208856[n_] := SeriesCoefficient[(1/(2*q))*((QPochhammer[-q, -q]/ QPochhammer[q, q]) - 1), {q, 0, n}]; Table[A208856[n], {n,0,50}] (* G. C. Greubel, Jun 19 2017 *)
-
{a(n) = local(A); if( n<0, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) - 1) / 2, n))}
A215594
Expansion of f(-x, -x^4) / f(x, x^4) in powers of x where f(,) is Ramanujan's two-variable theta function.
Original entry on oeis.org
1, -2, 2, -2, 0, 2, -4, 6, -4, 0, 6, -12, 14, -10, 0, 14, -26, 30, -22, 0, 28, -52, 60, -42, 0, 54, -100, 112, -78, 0, 100, -180, 202, -140, 0, 174, -314, 350, -240, 0, 296, -532, 588, -402, 0, 492, -876, 966, -658, 0, 794, -1412, 1550, -1050, 0, 1260, -2232
Offset: 0
1 - 2*x + 2*x^2 - 2*x^3 + 2*x^5 - 4*x^6 + 6*x^7 - 4*x^8 + 6*x^10 - 12*x^11 + ...
From _Peter Bala_, Jun 10 2025: (Start)
G.f.: A(q) = f(-q, -q^4) / f(q, q^4).
Simple continued fraction expansions of A(1/(2*m)):
m = 2 [0; 1 1 2 7 1 1 1 10 1 2 12 82 1 6 1 48 ...]
m = 3 [0; 1 2 2 17 1 1 2 14 2 2 24 318 1 1 1 1 ...]
m = 4 [0; 1 3 2 31 1 1 3 18 3 2 40 810 2 7 2 161 ...]
m = 5 [0; 1 4 2 49 1 1 4 22 4 2 60 1654 2 1 1 1 ...]
m = 6 [0; 1 5 2 71 1 1 5 26 5 2 84 2946 3 7 1 1 ...]
m = 7 [0; 1 6 2 97 1 1 6 30 6 2 112 4782 3 1 1 1 ...]
m = 8 [0; 1 7 2 127 1 1 7 34 7 2 144 7258 4 7 1 2 ...]
m = 9 [0; 1 8 2 161 1 1 8 38 8 2 180 10470 4 1 1 1 ...]
m = 10 [0; 1 9 2 199 1 1 9 42 9 2 220 14514 5 7 1 3 ...]
m = 11 [0; 1 10 2 241 1 1 10 46 10 2 264 19486 5 1 1 1 ...]
m = 12 [0; 1 11 2 287 1 1 11 50 11 2 312 25482 6 7 1 4 ...]
...
The sequence of the 4th partial denominators [7, 17, 31, 49, ...] appears to be given by the polynomial 2*m^2 - 1 for m >= 2.
The sequence of the 11th partial denominators [12, 24, 40, 60, ...] appears to be given by the polynomial 2*(m^2 + m) for m >= 2.
The sequence of the 12th partial denominators [82, 318, 810, 1654, ...] appears to be given by the polynomial 2*(8*m^3 - 8*m^2 + 6*m - 3) for m >= 2.
The sequence of the 16th partial denominators appears to become quasi-polynomial in m for m >= 5. (End)
-
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A215594[n_] := SeriesCoefficient[f[-x, -x^4]/f[x, x^4], {x, 0, n}]; Table[A215594[n], {n,0,50}] (* G. C. Greubel, Jun 18 2017 *)
-
{a(n) = local(A, s); if( n<0, 0, A = x * O(x^n); s = sqrtint( 40*n + 9); polcoeff( sum( k=(-s + 6)\10, (s - 3)\10, (-1)^k * x^((5*k + 3)*k/2), A) / sum( k=(-s + 6)\10, (s - 3)\10, x^((5*k + 3)*k/2), A), n))}
Comments