cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A291697 a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^n.

Original entry on oeis.org

1, 2, 8, 44, 256, 1512, 9056, 54896, 335872, 2069774, 12827888, 79875996, 499305472, 3131436856, 19694403520, 124165133424, 784478240768, 4965659813668, 31484486937512, 199923173603596, 1271192603065856, 8092551782518688, 51574780342740256, 329022223268286288, 2100934234342260736
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^3) holds for all primes p >= 5. Cf. A270919. (End)

Crossrefs

Main diagonal of A289522.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^n, {k, 0, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 24}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == QPochhammer[-r*s, r^2*s^2] / QPochhammer[r*s, r^2*s^2], QPochhammer[r*s, r^2*s^2] + QPochhammer[r*s, r^2*s^2]*((QPolyGamma[0, Log[-r*s]/Log[r^2*s^2], r^2*s^2] - QPolyGamma[0, Log[r*s]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2]) + 2*r^2*s^2*Derivative[0, 1][QPochhammer][r*s, r^2*s^2] == 2*r^2*s*Derivative[0, 1][QPochhammer][-r*s, r^2*s^2]}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)

Formula

a(n) = A289522(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 6.52085730573545526010335599231748172235904... and c = 0.296494808714349908707366708893... - Vaclav Kotesovec, Aug 30 2017

A292037 Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 2, 2, 6, 10, 16, 30, 46, 78, 124, 196, 306, 470, 724, 1086, 1644, 2438, 3608, 5304, 7734, 11232, 16196, 23270, 33206, 47250, 66846, 94232, 132280, 184966, 257720, 357768, 495090, 682702, 938760, 1286668, 1758708, 2397012, 3258340, 4417570, 5974204, 8059824
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 08 2017

Keywords

Comments

Convolution of A263140 and A035528 (with a(0)=1).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(-1/24 - Pi^4/(1344*Zeta(3)) + Pi^2 * n^(1/3) / (8*(7*Zeta(3))^(1/3)) + 3*(7*Zeta(3))^(1/3) * n^(2/3)/4) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(5/4) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962.

A103261 Number of partitions of 2n into parts with 10 types c^1 c^2...C^10 of each part. The even parts appear with multiplicity 1 for each type . The odd parts occur with multiplicity 2 for each part.

Original entry on oeis.org

1, 20, 200, 1360, 7200, 32024, 125280, 443680, 1450240, 4435940, 12827888, 35346800, 93377920, 237675640, 585229760, 1398704736, 3253934080, 7386124520, 16392493800, 35634450320, 75992326592, 159199081600, 328027789600
Offset: 0

Views

Author

Noureddine Chair, Feb 16 2005

Keywords

Comments

This is also Sequence(A080054)^(10) or sequence(A007096)^(5).
In general, if j > 0 and g.f. = Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^j, then a(n) ~ exp(Pi*sqrt(j*n/2)) * j^(1/4) / (2^(j/2 + 7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015

Examples

			a(2)=200 because we have 10 types of 4, 45 ways of writing 4 in terms of ten of 2's only or ten of 11's only and 100 ways of writing 2's combined with 11's so the total number of ways of writing 4 is 200.
		

Crossrefs

Cf. A080054 (j=1), A007096 (j=2), A261647 (j=3), A014969 (j=4), A261648 (j=5), A014970 (j=6), A014972 (j=8).

Programs

  • Maple
    series(product(((1+x^k)*(1-x^(2*k)))^(10)/((1-x^k)*(1+x^(2*k)))^(10),k=1..100),x=0,100);
  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^10,{k,0,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Aug 28 2015 *)

Formula

G.f.:(theta_4(0, x^2)/theta_4(0, x))^10= (theta_3(0, x)/theta_4(0, x))^5.
a(n) ~ exp(Pi*sqrt(5*n)) * 5^(1/4) / (64 * sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015

A210030 Expansion of phi(-q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, -2, 4, 6, -8, -12, 16, 22, -30, -40, 52, 68, -88, -112, 144, 182, -228, -286, 356, 440, -544, -668, 816, 996, -1210, -1464, 1768, 2128, -2552, -3056, 3648, 4342, -5160, -6116, 7232, 8538, -10056, -11820, 13872, 16248, -18996, -22176, 25844, 30068
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 8*q^5 - 12*q^6 + 16*q^7 + 22*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))}

Formula

Expansion of eta(q)^2 * eta(q^2) * eta(q^8)^2 / eta(q^4)^5 in powers of q.
Euler transform of period 8 sequence [ -2, -3, -2, 2, -2, -3, -2, 0, ...].
G.f.: (Sum_k (-1)^k * x^k^2) / (Sum_k x^(2 * k^2)).
a(n) = (-1)^n * A080015(n) = (-1)^[(n + 1) / 4] * A080054(n).
Convolution inverse of A208850.

A261647 Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 44, 102, 216, 428, 816, 1494, 2650, 4584, 7740, 12804, 20808, 33264, 52400, 81462, 125100, 189966, 285516, 425016, 627040, 917436, 1331856, 1919332, 2746926, 3905784, 5519352, 7754064, 10833192, 15055216, 20817600, 28647414, 39241336, 53517060
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(3*n/2)) * 3^(1/4) / (8 * 2^(1/4) * n^(3/4)).

A261648 Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^5.

Original entry on oeis.org

1, 10, 50, 180, 550, 1512, 3820, 9040, 20310, 43670, 90472, 181540, 354180, 674040, 1254640, 2289104, 4101430, 7228020, 12546030, 21473940, 36281656, 60565920, 99974140, 163297520, 264110180, 423211938, 672244600, 1059013320, 1655274320, 2568068120
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Comments

In general, if j > 0 and g.f. = Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^j, then a(n) ~ exp(Pi*sqrt(j*n/2)) * j^(1/4) / (2^(j/2 + 7/4) * n^(3/4)).

Crossrefs

Cf. A080054 (j=1), A007096 (j=2), A261647 (j=3), A014969 (j=4), A014970 (j=6), A014972 (j=8), A103261 (j=10).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^5,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(5*n/2)) * 5^(1/4) / (16 * 2^(1/4) * n^(3/4)).

A292038 Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^(2*k-1).

Original entry on oeis.org

1, 2, 2, 8, 14, 24, 52, 84, 158, 274, 464, 800, 1316, 2208, 3576, 5832, 9358, 14876, 23614, 36936, 57752, 89336, 137716, 210844, 321148, 486890, 733912, 1102336, 1646736, 2451464, 3632832, 5363988, 7889710, 11562712, 16888748, 24581904, 35670242, 51591096
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 08 2017

Keywords

Comments

Convolution of A262736 and A262811.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3*(7*Zeta(3))^(1/3)*n^(2/3) / 2^(5/3) - 1/12) * A * (7*Zeta(3))^(5/36) / (2^(31/36) * sqrt(3*Pi) * n^(23/36)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: exp(2*Sum_{k>=1} sigma_2(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019

A101277 Number of partitions of 2n in which all odd parts occur with multiplicity 2. There is no restriction on the even parts.

Original entry on oeis.org

1, 2, 3, 6, 10, 16, 25, 38, 57, 84, 121, 172, 243, 338, 465, 636, 862, 1158, 1546, 2050, 2702, 3542, 4616, 5986, 7729, 9932, 12707, 16196, 20563, 26010, 32788, 41194, 51591, 64418, 80195, 99558, 123269, 152226, 187514, 230434, 282519, 345596, 421844, 513834
Offset: 0

Views

Author

Noureddine Chair, Dec 20 2004; revised Jan 05 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is also A080054 times 1/Product_{k>=1} (1 - x^(2k)).
There are no partitions of 2n+1 in which all odd parts occur with multiplicity 2. - Michael Somos, Oct 27 2008

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + 57*x^8 + ...
G.f. = 1/q + 2*q^11 + 3*q^23 + 6*q^35 + 10*q^47 + 16*q^59 + 25*q^71 + ...
E.g. 12 = 10 + 2 = 10 + 1 + 1 = 8 + 4 = 8 + 2 + 2 = 8 + 2 + 1 + 1 = 6 + 6 = 6 + 4 + 2 = 6 + 4 + 1 + 1 = 6 + 3 + 3 = 6 + 2 + 2 + 2 = 6 + 2 + 2 + 1 + 1 = 5 + 5 + 2 = 5 + 5 + 1 + 1 = 4 + 4 + 4 = 4 + 4 + 2 + 2 = 4 + 4 + 2 + 1 + 1 = 4 + 3 + 3 + 2 = 4 + 3 + 3 + 1 + 1 = 4 + 2 + 2 + 2 + 2 = 4 + 2 + 2 + 2 + 1 + 1 = 3 + 3 + 2 + 2 + 2 = 3 + 3 + 2 + 2 + 1 + 1 = 2 + 2 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 + 1 + 1.
		

Crossrefs

Programs

  • Maple
    series(product(1/((1-x^(2*k-1))^2*(1-x^(4*k))),k=1..100),x=0,100);
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/((1-x^(2*k-1))^2 * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    (2/(QPochhammer[x] QPochhammer[-1, -x]) + O[x]^45)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, -x] QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Feb 10 2005 */

Formula

Euler transform of period 4 sequence [2, 0, 2, 1, ...]. - Michael Somos, Feb 10 2005
G.f.: (1/theta_4(0, x))*Product_{k>0}(1+x^(2k)) = theta_4(0, x^2)/theta_4(0, x)*Product_{k>0}(1-x^(2k)) = 1/Product_{k>0} ((1-x^(2k-1))^2 * (1-x^(4k))).
Expansion of 1 / (psi(-x) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Oct 27 2008
Expansion of q^(1/12) * eta(q^2)^2 / (eta(q)^2 * eta(q^4)) in powers of q. - Michael Somos, Oct 27 2008
a(n) ~ sqrt(5) * exp(Pi*sqrt(5*n/6)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Aug 30 2015
Expansion of phi(-x^2) / f(-x)^2 = chi(x) / f(-x) = 1 / (chi(-x)^2 * f(-x^4)) = f(-x^4) / psi(-x)^2 = psi(-x) / chi(-x) = chi(x)^2 / psi(-x^2) in powers of x. - Michael Somos, Nov 22 2016

A208856 Partitions of n into parts not congruent to 0, +-4, +-6, +-10, 16 (mod 32).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 72, 91, 114, 143, 178, 220, 272, 334, 408, 498, 605, 732, 884, 1064, 1276, 1528, 1824, 2171, 2580, 3058, 3616, 4269, 5028, 5910, 6936, 8124, 9498, 11088, 12922, 15034, 17468, 20264, 23472, 27154, 31369, 36189
Offset: 0

Views

Author

Michael Somos, Mar 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (1987) refers to this sequence as p(T, n) where T is the set in equation (1) on page 437.

Examples

			1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + 15*x^8 + 20*x^9 + ...
a(5) = 6 since  5 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 6 ways.
a(6) = 8 since  5 + 1 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 in 8 ways.
		

Crossrefs

Programs

  • Mathematica
    A208856[n_] := SeriesCoefficient[(1/(2*q))*((QPochhammer[-q, -q]/ QPochhammer[q, q]) - 1), {q, 0, n}]; Table[A208856[n], {n,0,50}] (* G. C. Greubel, Jun 19 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) - 1) / 2, n))}

Formula

Expansion of (f(x) / f(-x) - 1) / (2 * x) in powers of x where f() is a Ramanujan theta function.
Expansion of (f(x^14, x^34) - x^4 * f(x^2, x^46)) / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 32 sequence [ 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, ...].
a(n) = A115671(n + 1). 2 * a(n) = A080054(n + 1). a(2*n) = A187154(n). a(2*n + 1) = A208851(n).

A215594 Expansion of f(-x, -x^4) / f(x, x^4) in powers of x where f(,) is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, -2, 2, -2, 0, 2, -4, 6, -4, 0, 6, -12, 14, -10, 0, 14, -26, 30, -22, 0, 28, -52, 60, -42, 0, 54, -100, 112, -78, 0, 100, -180, 202, -140, 0, 174, -314, 350, -240, 0, 296, -532, 588, -402, 0, 492, -876, 966, -658, 0, 794, -1412, 1550, -1050, 0, 1260, -2232
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Let A(q) denote the g.f. of this sequence. Let m be a nonzero integer. The simple continued fraction expansions of the real numbers A(1/(2*m)) and A(1/(2*m+1)) may be predictable. For a given positive integer n, the sequence of the n-th partial denominators of the continued fractions are conjecturally polynomial or quasi-polynomial in m for m sufficiently large. An example is given below. Cf. A080054 and A098151. - Peter Bala, Jun 10 2025

Examples

			1 - 2*x + 2*x^2 - 2*x^3 + 2*x^5 - 4*x^6 + 6*x^7 - 4*x^8 + 6*x^10 - 12*x^11 + ...
From _Peter Bala_, Jun 10 2025: (Start)
G.f.: A(q) = f(-q, -q^4) / f(q, q^4).
Simple continued fraction expansions of A(1/(2*m)):
  m = 2 [0; 1   1  2    7  1  1   1  10   1  2   12     82  1  6  1   48 ...]
  m = 3 [0; 1   2  2   17  1  1   2  14   2  2   24    318  1  1  1    1 ...]
  m = 4 [0; 1   3  2   31  1  1   3  18   3  2   40    810  2  7  2  161 ...]
  m = 5 [0; 1   4  2   49  1  1   4  22   4  2   60   1654  2  1  1    1 ...]
  m = 6 [0; 1   5  2   71  1  1   5  26   5  2   84   2946  3  7  1    1 ...]
  m = 7 [0; 1   6  2   97  1  1   6  30   6  2  112   4782  3  1  1    1 ...]
  m = 8 [0; 1   7  2  127  1  1   7  34   7  2  144   7258  4  7  1    2 ...]
  m = 9 [0; 1   8  2  161  1  1   8  38   8  2  180  10470  4  1  1    1 ...]
 m = 10 [0; 1   9  2  199  1  1   9  42   9  2  220  14514  5  7  1    3 ...]
 m = 11 [0; 1  10  2  241  1  1  10  46  10  2  264  19486  5  1  1    1 ...]
 m = 12 [0; 1  11  2  287  1  1  11  50  11  2  312  25482  6  7  1    4 ...]
 ...
The sequence of the 4th partial denominators [7, 17, 31, 49, ...] appears to be given by the polynomial 2*m^2 - 1 for m >= 2.
The sequence of the 11th partial denominators [12, 24, 40, 60, ...] appears to be given by the polynomial 2*(m^2 + m) for m >= 2.
The sequence of the 12th partial denominators [82, 318, 810, 1654, ...] appears to be given by the polynomial 2*(8*m^3 - 8*m^2 + 6*m - 3) for m >= 2.
The sequence of the 16th partial denominators appears to become quasi-polynomial in m for m >= 5. (End)
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A215594[n_] := SeriesCoefficient[f[-x, -x^4]/f[x, x^4], {x, 0, n}]; Table[A215594[n], {n,0,50}] (* G. C. Greubel, Jun 18 2017 *)
  • PARI
    {a(n) = local(A, s); if( n<0, 0, A = x * O(x^n); s = sqrtint( 40*n + 9); polcoeff( sum( k=(-s + 6)\10, (s - 3)\10, (-1)^k *  x^((5*k + 3)*k/2), A) / sum( k=(-s + 6)\10, (s - 3)\10,  x^((5*k + 3)*k/2), A), n))}

Formula

Euler transform of period 10 sequence [ -2, 1, 0, -2, 0, -2, 0, 1, -2, 0, ...].
a(5*n + 4) = 0.
Previous Showing 11-20 of 40 results. Next