cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A261649 Expansion of Product_{k>=0} ((1+x^(3*k+1))/(1-x^(3*k+1)))^2.

Original entry on oeis.org

1, 4, 8, 12, 20, 36, 56, 80, 120, 180, 252, 348, 492, 680, 912, 1228, 1652, 2180, 2856, 3744, 4860, 6256, 8044, 10284, 13048, 16520, 20848, 26140, 32672, 40756, 50596, 62576, 77256, 95060, 116540, 142592, 174036, 211736, 257056, 311448, 376332, 453764, 546160
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(3*k+1))/(1-x^(3*k+1)))^2,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * Gamma(1/3)^2 / (2^(7/4) * 3^(5/12) * Pi^(4/3) * n^(7/12)).

A261651 Expansion of Product_{k>=0} ((1+x^(3*k+1))/(1-x^(3*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 38, 72, 138, 254, 432, 708, 1154, 1836, 2826, 4288, 6456, 9552, 13902, 20070, 28722, 40614, 56916, 79242, 109448, 149988, 204318, 276672, 372288, 498264, 663602, 879252, 1159470, 1522564, 1990788, 2592162, 3362638, 4346244, 5597100, 7183792, 9191004
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(3*k+1))/(1-x^(3*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(n)) * Gamma(1/3)^3 / (4 * Pi^2 * sqrt(3*n)).

A261652 Expansion of Product_{k>=0} ((1+x^(4*k+1))/(1-x^(4*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 38, 66, 108, 182, 306, 486, 728, 1068, 1578, 2318, 3312, 4614, 6388, 8862, 12192, 16488, 22038, 29400, 39156, 51702, 67554, 87810, 113982, 147384, 189200, 241446, 307356, 390408, 493662, 621006, 778712, 974628, 1216284, 1511756, 1872840, 2315538
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Comments

In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} ((1 + x^(a*k+b))/(1 - x^(a*k+b)))^j, then a(n) ~ Gamma(b/a)^j * 2^(j/2 - 3/2 - 2*b*j/a) * a^(-j/4 - 1/4 + b*j/(2*a)) * exp(Pi*sqrt(j*n/a)) * j^(1/4 - j/4 + b*j/(2*a)) * Pi^(b*j/a - j) * n^(j/4 - 3/4 - b*j/(2*a)).

Crossrefs

Cf. A015128 (a=1, b=1, j=1), A156616.
Cf. A080054 (a=2, b=1, j=1), A007096 (a=2, b=1, j=2), A261647 (a=2, b=1, j=3), A014969 (a=2, b=1, j=4), A261648 (a=2, b=1, j=5), A014970 (a=2, b=1, j=6), A014972 (a=2, b=1, j=8), A103261 (a=2, b=1, j=10).
Cf. A261610 (a=3, b=1, j=1), A261649 (a=3, b=1, j=2), A261651 (a=3, b=1, j=3).
Cf. A261611 (a=4, b=1, j=1), A261650 (a=4, b=1, j=2), A261652 (a=4, b=1, j=3).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(3*n)/2) * 2^(1/4) * Gamma(1/4)^3 / (8 * 3^(1/8) * Pi^(9/4) * n^(3/8)).

A103260 Number of partitions of 2n prime to 3 with all odd parts occurring with multiplicity 2. The even parts occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 8, 10, 10, 12, 16, 22, 28, 32, 36, 42, 52, 66, 80, 92, 104, 120, 144, 174, 206, 236, 266, 304, 356, 420, 488, 554, 624, 708, 816, 946, 1084, 1224, 1372, 1548, 1764, 2016, 2288, 2568, 2868, 3216, 3632, 4110, 4626, 5166, 5748, 6412, 7188
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

Convolution of A098884 and A003105. [corrected by Vaclav Kotesovec, Feb 07 2021]
Also equal to the number of overpartitions of n into parts congruent to 1 or 5 modulo 6. - Jeremy Lovejoy, Nov 28 2024

Examples

			E.g. a(7)=8 because 14=10+4=10+2+1+1=8+4+2=8+4+1+1=7+7=5+5+4=5+5+2+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))),k=1..100),x=0,100);
    # alternative program:
    with(gfun): series( add(x^(n*(3*n-2)), n = -6..6)/add((-1)^n*x^(n*(3*n-2)), n = -6..6), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

Formula

G.f.: (Theta_4(0, x^2)*theta_4(0, x^3))/(theta_4(0, x)*theta_4(0, x^(6))) = Product_{k>0}((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))).
Euler transform of period 12 sequence [2, -1, 0, 0, 2, 0, 2, 0, 0, -1, 2, 0, ...]. - Vladeta Jovovic, Feb 17 2005
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
G.f.: f(x,x^5)/f(-x,-x^5) = ( Sum_{n = -oo..oo} x^(n*(3*n-2)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(3*n-2)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. Cf. A080054 and A098151. - Peter Bala, Feb 05 2021

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015

A104274 Number of partitions of n in which odd squares occur with 2 types c,c* and with multiplicity 1. The even squares and parts that are twice the squares they occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 12, 14, 16, 18, 18, 18, 18, 18, 18, 22, 26, 28, 30, 30, 30, 30, 30, 30, 34, 38, 40, 42, 42, 42, 44, 48, 50, 54, 58, 60, 62, 62, 62, 66, 74, 78, 82, 86, 88, 90, 90, 90
Offset: 0

Views

Author

Noureddine Chair, Feb 27 2005

Keywords

Comments

Convolution of A167700 and A167661. - Vaclav Kotesovec, Sep 19 2017

Examples

			E.g. a(10)=6 because we can write it as 91,91*,9*1,9*1*,82,811*.
		

Crossrefs

Programs

  • Maple
    series(product((1+x^((2*k-1)^2))/(1-x^(2*k-1)^2)),k=1..100),x=0,100);
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^((2*k-1)^2)) / (1 - x^((2*k-1)^2)), {k, 1, Floor[Sqrt[nmax]/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 19 2017 *)

Formula

G.f.: product_{k>0}((1+x^(2k-1)^2)/(1-x^(2k-1)^2)).
a(n) ~ exp(3 * 2^(-8/3) * Pi^(1/3) * ((4-sqrt(2)) * Zeta(3/2))^(2/3) * n^(1/3)) * ((4-sqrt(2)) * Zeta(3/2))^(1/3) / (2^(7/3) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 19 2017

A207944 Expansion of Product_{i>=1} (1 + x^(2*i + 1))/(1 - x^(2*i + 1)).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 2, 2, 4, 4, 6, 6, 10, 10, 14, 18, 20, 26, 32, 38, 46, 58, 66, 82, 98, 116, 138, 166, 194, 230, 274, 318, 376, 442, 514, 602, 704, 814, 950, 1102, 1274, 1474, 1706, 1962, 2262, 2606, 2986, 3430, 3934, 4496, 5144, 5878, 6698, 7638, 8698, 9886
Offset: 0

Views

Author

Roger L. Bagula, Feb 21 2012

Keywords

References

  • George E. Andrews, Number Theory, Dover Publications, N.Y., 1971, 164-165.
  • Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, 144.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k + 1)), {k, 1, nmax}], {x, 0, nmax}], x] (* fixed by Vaclav Kotesovec, Apr 13 2017 *)

Formula

a(n) ~ exp(sqrt(n/2)*Pi) * Pi / (2^(19/4) * n^(5/4)). - Vaclav Kotesovec, Apr 13 2017

A261156 Expansion of chi(q) * chi(-q^9) / (chi(-q) * chi(q^9)) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 16, 22, 28, 36, 48, 60, 76, 96, 120, 150, 184, 228, 280, 340, 416, 504, 608, 732, 878, 1052, 1252, 1488, 1768, 2088, 2464, 2902, 3408, 3996, 4672, 5460, 6364, 7400, 8600, 9972, 11544, 13344, 15400, 17752, 20424, 23472, 26944, 30876, 35346
Offset: 0

Views

Author

Michael Somos, Aug 10 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 22*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2] QPochhammer[ -q, q] QPochhammer[ q^9, q^18] QPochhammer[ q^9, -q^9], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^9)^2 * eta(q^36) / (eta(q)^2 * eta(q^4) * eta(q^18)^3) in powers of q.
G.f. A(x) = B(x) / B(x^9) where B(x) is the g.f. of A080054.
Euler transform of period 36 sequence [ 2, -1, 2, 0, 2, -1, 2, 0, 0, -1, 2, 0, 2, -1, 2, 0, 2, 0, 2, 0, 2, -1, 2, 0, 2, -1, 0, 0, 2, -1, 2, 0, 2, -1, 2, 0, ...].
a(n) = 2 * A233693(n) unless n=0. a(2*n) = 2 * A123629(n) = 2 * A212484(n) unless n=0.
a(3*n) = A186924(n). a(3*n) = 4 * A187100(n) unless n=0.
a(n) = (-1)^n * A260215(n). - Michael Somos, Aug 14 2015
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A261650 Expansion of Product_{k>=0} ((1+x^(4*k+1))/(1-x^(4*k+1)))^2.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 40, 60, 80, 104, 144, 204, 272, 344, 440, 584, 768, 968, 1200, 1516, 1936, 2424, 2968, 3644, 4528, 5596, 6800, 8216, 10000, 12184, 14688, 17564, 21056, 25320, 30272, 35912, 42576, 50616, 60024, 70728, 83136, 97896, 115200, 134924, 157504
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^2,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(n/2)) * 2^(3/2) * Gamma(1/4)^2 / (16 * Pi^(3/2) * sqrt(n)).

A289522 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=0} ((1 + x^(2*j+1))/(1 - x^(2*j+1)))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 8, 4, 0, 1, 8, 18, 16, 6, 0, 1, 10, 32, 44, 32, 8, 0, 1, 12, 50, 96, 102, 56, 12, 0, 1, 14, 72, 180, 256, 216, 96, 16, 0, 1, 16, 98, 304, 550, 624, 428, 160, 22, 0, 1, 18, 128, 476, 1056, 1512, 1408, 816, 256, 30, 0, 1, 20, 162, 704, 1862, 3240, 3820, 3008, 1494, 404, 40, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 07 2017

Keywords

Examples

			Square array begins:
1,  1,   1,    1,    1,     1,  ...
0,  2,   4,    6,    8,    10,  ...
0,  2,   8,   18,   32,    50,  ...
0,  4,  16,   44,   96,   180,  ...
0,  6,  32,  102,  256,   550,  ...
0,  8,  56,  216,  624,  1512,  ...
		

Crossrefs

Columns k=0-6 give: A000007, A080054, A007096, A261647, A014969, A261648, A014970.
Rows n=0-3 give: A000012, A005843, A001105, A217873.
Main diagonal gives A291697.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i + 1))/(1 - x^(2 i + 1)))^k, {i, 0, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=0} ((1 + x^(2*j+1))/(1 - x^(2*j+1)))^k.
G.f. of column 2k: (theta_3(x)/theta_4(x))^k, where theta_() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A261648.

A292563 Expansion of Product_{k>=1} (1 + x^((2*k-1)^3)) / (1 - x^((2*k-1)^3)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 19 2017

Keywords

Comments

Convolution of A292547 and A287091.
In general, if m > 0 and g.f. = Product_{k>=1} (1 + x^((2*k-1)^m)) / (1 - x^((2*k-1)^m)), then a(n) ~ exp((m+1) * ((2^(1 + 1/m)-1) * Gamma(1/m) * Zeta(1 + 1/m)/m^2)^(m/(m+1)) * n^(1/(m+1)) / 2) * ((2^(1 + 1/m)-1) * Gamma(1/m) * Zeta(1 + 1/m))^(m/(2*(m+1))) / (sqrt(Pi*(m+1)) * 2^(m/2 + 1) * m^((m-1)/(2*(m+1))) * n^((2*m+1)/(2*(m+1)))).

Crossrefs

Cf. A080054 (m=1), A104274 (m=2).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^((2*k-1)^3)) / (1 - x^((2*k-1)^3)), {k, 1, Floor[nmax^(1/3)/2] + 1}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2 * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/8) / (2^(7/2) * 3^(1/4) * sqrt(Pi) * n^(7/8)).
Previous Showing 21-30 of 40 results. Next