cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A300413 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 - x^prime(k)).

Original entry on oeis.org

1, 0, 2, 2, 2, 6, 4, 10, 10, 14, 20, 22, 32, 38, 48, 60, 74, 90, 112, 134, 164, 196, 236, 282, 336, 398, 472, 554, 652, 766, 890, 1046, 1206, 1408, 1624, 1876, 2168, 2486, 2860, 3276, 3744, 4282, 4878, 5554, 6316, 7160, 8124, 9186, 10388, 11722, 13216, 14876, 16732, 18794, 21084, 23636
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A000586 and A000607.

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[(1 + x^Prime[k])/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000040(k))/(1 - x^A000040(k)).
log(a(n)) ~ Pi*sqrt(2*n/log(n/3)) * (1/3 + 2*sqrt(log(n/3) / log(2*n/3)) / 3). - Vaclav Kotesovec, Jan 12 2021

A361008 G.f.: Product_{k >= 0} ((1 + x^(2*k+1)) / (1 - x^(2*k+1)))^k.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 2, 6, 8, 10, 20, 18, 42, 40, 78, 92, 140, 192, 258, 382, 480, 728, 902, 1334, 1698, 2404, 3148, 4292, 5742, 7608, 10304, 13430, 18192, 23592, 31720, 41144, 54766, 71188, 93762, 122156, 159420, 207820, 269380, 350726, 452434, 587520, 755446
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2*k + 1))/(1 - x^(2*k + 1)))^k, {k, 0, n}], {x, 0, n}], {n, 0, 50}]

Formula

a(n) ~ sqrt(A/(3*Pi)) * (7*zeta(3))^(11/72) * exp(3*(7*zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3)/(8*(7*zeta(3))^(1/3)) - 1/24 - Pi^4/(1344*zeta(3))) / (2^(3/4) * n^(47/72)), where A = A074962 is the Glaisher-Kinkelin constant.

A100684 Number of partitions of 2n free of multiples of 8 such that 4 occurs at most once. All odd parts occur with even multiplicities. There is no restriction on the other even parts.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 32, 48, 72, 106, 152, 216, 305, 422, 580, 792, 1068, 1432, 1908, 2520, 3313, 4332, 5628, 7280, 9373, 12008, 15324, 19480, 24661, 31112, 39120, 49016, 61229, 76260, 94692, 117264, 144834, 178412, 219244, 268784, 328746
Offset: 0

Views

Author

Noureddine Chair, Jan 27 2005

Keywords

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 48*x^7 + 72*x^8 + ...
		

Crossrefs

Cf. A080054.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[(1-x^4)*Product[(1+x^(2*k))/(1-x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (1 - x^4) * eta(x^4 + A) * eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Feb 10 2005 */

Formula

G.f.: (1-x^4)*Product((1+x^(2*i))/(1-x^(2*i-1))^2, i=1..infinity). [Vladeta Jovovic]
Expansion of (1 - q^4) * q^(-1/6) * eta(q^4) * eta(q^2) / eta(q)^2 in powers of q.
G.f.: (1-x^4) * Prod_{k>0} (1 + x^(2*k)) * (1 + x^k)^2. - Michael Somos, Feb 10 2005
a(n) ~ 5^(3/4) * Pi * exp(Pi*sqrt(5*n/6)) / (2^(11/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Sep 06 2015

Extensions

Corrected by Vladeta Jovovic, Feb 01 2005
Typo in PARI program fixed by Vaclav Kotesovec, Sep 06 2015

A193863 Expansion of Product_{n>=0} (1 + q*(-q^2)^n) / (1 - q*(-q^2)^n).

Original entry on oeis.org

1, 2, 2, 0, -2, 0, 4, 4, -2, -6, 0, 8, 4, -8, -8, 8, 14, -4, -18, 0, 24, 8, -28, -20, 28, 34, -24, -48, 16, 64, 0, -76, -18, 88, 44, -96, -78, 96, 116, -88, -160, 68, 208, -32, -252, -16, 296, 84, -332, -170, 354, 272, -360, -392, 344, 528, -296, -672, 216, 824, -96, -976, -72, 1116, 286, -1240, -552, 1336, 876, -1384
Offset: 0

Views

Author

Joerg Arndt, Aug 07 2011

Keywords

Comments

Expansion of E(-q^2, +q) for E(q,x) = Product_{n>=0} ( 1 + x*q^n ) / ( 1 - x*q^n ).
Replacing q by -q in the g.f. gives the inverse of the g.f., whose expansion is obtained by negating every second term.

Examples

			1 + 2*x + 2*x^2 - 2*x^4 + 4*x^6 + 4*x^7 - 2*x^8 - 6*x^9 + 8*x^11 + ...
		

Crossrefs

Cf. A015128 E(+q,+q), A002448 E(+q,-q), A000122 E(-q,+q), A004402 E(-q,-q), A080054 E(+q^2,+q), A108494 E(+q^2,-q), A300574, A300575.

Programs

  • PARI
    N=66; q='q+O('q^N); /* that many terms */
    gf = prod(n=0, N, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) );
    Vec(gf) /* show terms */
    /* Alternative computation of the g.f. using a product form */
    V=[0,-2, 1, 2, 0, -2, -1, 2]; /* note vectors are one-based */
    gf=prod(n=0, N, (1-q^n)^(V[n%8+1]) );
    
  • PARI
    {a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n) )^[ 0, -2, 1, 2, 0, -2, -1, 2][k%8 + 1]), n))} /* Michael Somos, Feb 26 2012 */

Formula

Euler transform of period 8 sequence [ 2, -1, -2, 0, 2, 1, -2, 0, ...]. - Michael Somos, Feb 26 2012
G.f.: prod(n>=0, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) ).
G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k )/prod(k=1..n, 1-(-q^2)^k ) * q^n ).
G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k)/( prod(k=1..n, 1-(-q^2)^k) * prod(k=0..n-1, 1-q*(-q^2)^k ) ) * q^n * (-q^2)^(n*(n-1)/2) ).
Convolution of A300574 and A300575. - Seiichi Manyama, Nov 22 2019

A274352 Convolution of A015723 and A000700.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 18, 26, 36, 53, 76, 104, 140, 190, 252, 336, 437, 564, 732, 936, 1186, 1504, 1894, 2366, 2950, 3659, 4520, 5564, 6822, 8330, 10152, 12326, 14906, 17996, 21662, 25996, 31135, 37190, 44314, 52704, 62532, 74036, 87504, 103212, 121496, 142798
Offset: 0

Views

Author

R. J. Mathar, Jun 18 2016

Keywords

Comments

Also the convolution of A080054 and A048272.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
         [0, 2, -1, 2][1+irem(d, 4)], d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    g:= proc(n) option remember; add((-1)^(d+1), d=divisors(n)) end:
    a:= n-> add(b(j)*g(n-j), j=0..n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 18 2016
  • Mathematica
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, q[n - k, k] + q[n - k, k - 1]]]; Table[Sum[SeriesCoefficient[Product[1 + x^j, {j, 1, k, 2}], {x, 0, k}] Sum[i q[#, i], {i, 1, Floor[(Sqrt[8 # + 1] - 1)/2]}] &[n - k], {k, 0, n}], {n, 0, 45}] (* Michael De Vlieger, Jun 18 2016, after Vaclav Kotesovec at A015723 and Vladimir Reshetnikov at A000700 *)

Formula

a(n) = Sum_{k=0..n} A015723(k)*A000700(n-k).
a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(3/4) * n^(1/4)). - Vaclav Kotesovec, Sep 14 2021

A294592 a(n) = [x^n] (theta_3(x)/theta_4(x))^n, where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 32, 304, 3072, 32024, 340352, 3666016, 39878656, 437091892, 4819567552, 53401892240, 594093969408, 6631726263608, 74242911364864, 833237193123104, 9371924860764160, 105614054423502408, 1192210691317862048, 13478559927485340144, 152589996020498655232, 1729590806617202662528
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2017

Keywords

Crossrefs

Programs

  • Maple
    S:= series((JacobiTheta3(0,x)/JacobiTheta4(0,x))^n,x,51):
    seq(coeff(S,x,n),n=0..50); # Robert Israel, Nov 03 2017
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x]/EllipticTheta[4, 0, x])^n, {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^(2 n), {k, 0, n}], {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^(2 n), {x, 0, n}], {n, 0, 21}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s], EllipticTheta[4, 0, r*s] + r*s*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s] == r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]}, {r, 1/10}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^(2*n).
From Vaclav Kotesovec, Nov 05 2017: (Start)
a(n) ~ c * d^n / sqrt(n), where
d = 11.61255065799699699891360038489317237925475956178123836149123386457... and
c = 0.34456510029264878768512693687607064416428117641473856418257649837... (End)

A300414 Expansion of Product_{k>=2} (1 + x^Fibonacci(k))/(1 - x^Fibonacci(k)).

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 30, 42, 62, 84, 114, 154, 198, 260, 332, 418, 530, 654, 810, 994, 1202, 1462, 1752, 2094, 2500, 2948, 3486, 4092, 4776, 5582, 6468, 7490, 8650, 9928, 11406, 13036, 14862, 16934, 19196, 21758, 24592, 27706, 31216, 35038, 39284, 43990, 49100, 54798, 61008, 67798
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A000119 and A003107.

Crossrefs

Programs

  • Mathematica
    nmax = 49; CoefficientList[Series[Product[(1 + x^Fibonacci[k])/(1 - x^Fibonacci[k]), {k, 2, 20}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^A000045(k))/(1 - x^A000045(k)).

A304627 a(n) = [x^n] Product_{k>=1} (1 + x^k)*(1 - x^(n*k))/((1 - x^k)*(1 + x^(n*k))).

Original entry on oeis.org

1, 0, 2, 6, 12, 22, 38, 62, 98, 152, 230, 342, 502, 726, 1038, 1470, 2060, 2862, 3946, 5398, 7334, 9902, 13286, 17726, 23526, 31064, 40822, 53406, 69566, 90246, 116622, 150142, 192610, 246254, 313806, 398638, 504884, 637590, 802934, 1008446, 1263270, 1578526, 1967694, 2447062
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k) (1 - x^(n k))/((1 - x^k) (1 + x^(n k))) , {k, 1, n}], {x, 0, n}], {n, 0, 43}]
    Table[SeriesCoefficient[Product[(1 + x^k)/(1 - x^k), {k, 1, n - 1}], {x, 0, n}], {n, 0, 43}]
    Join[{1}, Table[SeriesCoefficient[EllipticTheta[4, 0, x^n]/EllipticTheta[4, 0, x], {x, 0, n}], {n, 43}]]
    nmax = 43; CoefficientList[Series[1/EllipticTheta[4, 0, x] - 2 x/(1 - x), {x, 0, nmax}], x]

Formula

G.f.: 1/theta_4(x) - 2*x/(1 - x), where theta_4() is the Jacobi theta function.
a(n) ~ exp(Pi*sqrt(n)) / (8*n). - Vaclav Kotesovec, May 19 2018

A208150 Expansion of (1 + 2*Product_{i>=1} (1 + x^(8*i - 1)))/(-1 + Product_{i>=1} (1 - x^(8*i - 1))).

Original entry on oeis.org

-2, 3, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, -4, 3, 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, -4, 2, 3, 0, 0, 0, 0, 0, -3, -9, -3, 0, 0, 0, 0, -4, 1, 5, 3, 0, 0, 0, 0, 1, -15, -9, -3, 0, 0, 0, -4, 0, 6, 5, 3, 0, 0, 0, 5, -20, -21, -12, -3, 0, 0, -4, -1, 16
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2012

Keywords

Examples

			-3/x^7 - 2 + 3*x -3*x^8 - 4*x^15 + 3*x^16 - 3*x^23 - 3*x^24 - 4*x^30 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[
      Series[(1 + 2*Product[1 + x^(8*i - 1), {i, 1, Infinity}])/(-1 +
          Product[(1 - x^(8*i - 1)), {i, 1, Infinity}]), {x, 0, 100}],
      n], {n, 0, 100}]

A216879 G.f. satisfies: A(x) = sqrt( theta_3(x*A(x)) / theta_4(x*A(x)) ).

Original entry on oeis.org

1, 2, 6, 24, 110, 540, 2772, 14704, 79974, 443594, 2499640, 14269320, 82346004, 479604748, 2815557264, 16643093712, 98974828886, 591742372068, 3554708076858, 21444913596408, 129870710693976, 789237890852160, 4811481299622276, 29417496447990096, 180337119342194820
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2012

Keywords

Comments

Here theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2) and theta_4(x) = 1 + 2*Sum_{n>=1} (-x)^(n^2) are Jacobi theta functions.
The radius of convergence r of g.f. A(x) is given by
r = 0.15335406881552899483841215094726329935743212998703... with
A(r) = 2.14877235788136654366723937779352044712735012012453...
such that G(y) = y*G'(y) = A(r) at y = r*A(r) = 0.3295229840394455820300...
where G(x) = sqrt(theta_3(x)/theta_4(x)).
Conjectured to be the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {5>1, 1>2, 1>4} of length 5. That is, conjectured to be the number of length n+1 permutations having no subsequences of length 5 in which the fifth element is larger than the first element, which in turn is larger than the second and fourth elements. - Sergey Kitaev, Dec 13 2020
The conjecture was disproven. The numbers are actually A366706, which matches the first 9 entries. - Christian Bean, Jul 22 2024

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 110*x^4 + 540*x^5 + 2772*x^6 +...
such that, by definition, the g.f. satisfies:
A(x) = sqrt( (1 + 2*Sum_{n>=1} (x*A(x))^(n^2) ) / (1 + 2*Sum_{n>=1} (-x*A(x))^(n^2) ) ).
		

Crossrefs

Cf. A080054.

Programs

  • Mathematica
    InverseSeries[x Sqrt[EllipticTheta[4, 0, x]/EllipticTheta[3, 0, x]] + O[x]^26] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Oct 01 2019 *)
    (* Calculation of constants {d,c}: *) {1/r, s*Sqrt[EllipticTheta[3, 0, r*s] / (Pi*(6*EllipticTheta[3, 0, r*s] - r*s*(4*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] - r*s*Derivative[0, 0, 2][EllipticTheta][3, 0, r*s] + r*s^3*Derivative[0, 0, 2][EllipticTheta][4, 0, r*s])))]} /. FindRoot[{EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s] == s^2, (r*(Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] - s^2*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s])) / (2*s*EllipticTheta[4, 0, r*s]) == 1}, {r, 1/6}, {s, 3/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 16 2023 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sqrt((1+2*sum(m=1,sqrtint(n)+1,(x*A)^(m^2)))/(1+2*sum(m=1,sqrtint(n)+1,(-x*A)^(m^2)))));polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=eta(-x*A)^2*eta(x^4*A^4)/eta(x^2*A^2)^3);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(2*sum(n=1,n,sigma(2*n-1)*(x*A)^(2*n-1)/(2*n-1))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1/prod(m=1,n,(1+(x*A)^(2*m))*(1-(x*A)^(2*m-1))^2));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=prod(m=1,n,(1+(x*A)^(2*m-1))*(1+(x*A)^m)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=prod(m=1,n,(1+(x*A)^(2*m-1))/(1-(x*A)^(2*m-1))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=prod(m=1,n,(1-(x*A)^(4*m-2))/((1-(x*A)^(4*m-1))*(1-(x*A)^(4*m-3)))^2));polcoeff(A,n)}

Formula

G.f. satisfies the identities:
(1) A(x) = 1 / A(-x*A(x)^2).
(2) A(x) = eta(-x*A(x))^2 * eta(x^4*A(x)^4) / eta(x^2*A(x)^2)^3.
(3) A(x) = exp( 2*Sum_{n>=1} sigma(2*n-1) * (x*A(x))^(2*n-1) / (2*n-1) ).
(4) A(x) = 1 / Product_{n>=1} (1 + (x*A(x))^(2*n)) * (1 - (x*A(x))^(2*n-1))^2.
(5) A(x) = Product_{n>=1} (1 + (x*A(x))^(2*n-1)) * (1 + (x*A(x))^n).
(6) A(x) = Product_{n>=1} (1 + (x*A(x))^(2*n-1)) / (1 - (x*A(x))^(2*n-1)).
(7) A(x) = Product_{n>=1} (1 - (x*A(x))^(4*n-2)) / ((1 - (x*A(x))^(4*n-1))*(1 - (x*A(x))^(4*n-3)))^2.
(8) A(x) = 1/(1 - 2*q/(1+q - q^2*(1-q^2)/(1+q^3 - q^3*(1-q^4)/(1+q^5 - q^4*(1-q^6)/(1+q^7 - ...))))), a continued fraction, where q = x*A(x).
(9) A(x) = (1/x)*Series_Reversion( x*sqrt(theta_4(x)/theta_3(x)) ).
(10) A(x/G(x)) = G(x) where G(x) = sqrt(theta_3(x)/theta_4(x)) is the g.f. of A080054.
Special value: A(exp(-Pi)/2^(1/8)) = 2^(1/8).
a(n) = [x^n] ( theta_3(x) / theta_4(x) )^((n+1)/2) / (n+1).
a(n) ~ c * d^n / n^(3/2), where d = 6.52085730573545526010335599231748172235904166255252115709479430152403... and c = 0.6370998492207183978277090515469899143891211207560886906399176320450... - Vaclav Kotesovec, Nov 16 2023
Previous Showing 31-40 of 40 results.