cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A244499 Decimal expansion of e/gamma, the ratio of Euler number and the Euler-Mascheroni constant.

Original entry on oeis.org

4, 7, 0, 9, 3, 0, 0, 1, 6, 9, 3, 2, 7, 1, 0, 3, 3, 3, 0, 7, 4, 4, 1, 4, 3, 2, 1, 7, 7, 5, 4, 7, 0, 0, 4, 6, 3, 5, 1, 6, 6, 1, 6, 7, 8, 3, 2, 9, 0, 6, 4, 7, 1, 9, 6, 0, 9, 7, 8, 7, 0, 3, 8, 7, 1, 4, 8, 8, 1, 8, 3, 6, 1, 2, 4, 9, 5, 8, 1, 1, 6, 3, 1, 3, 8, 8, 5, 4, 8, 8, 1, 9, 2, 3, 6, 0, 7, 2, 0, 3, 0, 1, 7, 5, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 29 2014

Keywords

Examples

			4.709300169327103330744143217754700463516616783290647196...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.10, page 2.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(1)/EulerGamma(R); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[E/EulerGamma, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    exp(1)/Euler
    

Formula

Equals lim_{n->oo} (g(n)^gamma/gamma^g(n))^(2*n), where g(n) = H(n) - log(n) and H(n) = A001008(n)/A002805(n) is the n-th harmonic number (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022

A341749 Numbers k such that gcd(k, phi(k)) > log(log(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 93, 94, 96
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2021

Keywords

Comments

First differs from A080197 at n = 28.
Erdős et al. (2008) proved that the asymptotic density of numbers k such that gcd(k, phi(k)) > (log(log(k)))^u for a real number u > 0 is equal to exp(-gamma) * Integral_{t=u..oo} rho(t) dt, where rho(t) is the Dickman-de Bruijn function and gamma is Euler's constant (A001620). For this sequence u = 1, and therefore its asymptotic density is 1 - exp(-gamma) = 0.43854... (A227242).
There are only 8 cyclic numbers (A003277) in this sequence: 1, 2, 3, 5, 7, 11, 13, 15. All the other terms are in A060679. The first term of A060679 which is not in this sequence is 1622.

Examples

			16 is a term since gcd(16, phi(16)) = gcd(16, 8) = 8 > log(log(16)) = 1.0197...
17 is not a term since gcd(17, phi(17)) = gcd(17, 16) = 1 < log(log(17)) = 1.0414...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], GCD[#, EulerPhi[#]] > Log[Log[#]] &]
  • PARI
    isok(k) = (k==1) || (gcd(k, eulerphi(k)) > log(log(k))); \\ Michel Marcus, Feb 19 2021

A341750 Numbers k such that gcd(k, sigma(k)) > log(log(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 34, 38, 40, 42, 44, 45, 46, 48, 51, 52, 54, 56, 58, 60, 62, 66, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 99, 102, 104, 105, 106, 108, 110, 112
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2021

Keywords

Comments

Pollack (2011) proved that the asymptotic density of numbers k such that gcd(k, sigma(k)) > (log(log(k)))^u for a real number u > 0 is equal to exp(-gamma) * Integral_{t=u..oo} rho(t) dt, where rho(t) is the Dickman-de Bruijn function and gamma is Euler's constant (A001620). For this sequence u = 1, and therefore its asymptotic density is 1 - exp(-gamma) = 0.43854... (A227242).
There are only 10 terms of A014567 in this sequence: 1, 2, 3, 4, 5, 7, 8, 9, 11, 13.

Examples

			15 is a term since gcd(15, sigma(15)) = gcd(15, 24) = 3 > log(log(15)) = 0.996...
16 is not a term since gcd(16, sigma(16)) = gcd(16, 31) = 1 < log(log(16)) = 1.0197...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], GCD[#, DivisorSigma[1, #]] > Log[Log[#]] &]
  • PARI
    isok(k) = (k==1) || (gcd(k, sigma(k)) > log(log(k))); \\ Michel Marcus, Feb 20 2021

A125313 Decimal expansion of 2*exp(-gamma).

Original entry on oeis.org

1, 1, 2, 2, 9, 1, 8, 9, 6, 7, 1, 3, 3, 7, 7, 0, 3, 3, 9, 6, 4, 8, 2, 8, 6, 4, 2, 9, 5, 8, 1, 7, 6, 1, 5, 7, 3, 5, 3, 1, 4, 2, 0, 7, 7, 3, 8, 5, 0, 3, 0, 6, 3, 3, 6, 3, 0, 8, 3, 1, 8, 1, 5, 2, 0, 9, 0, 1, 7, 5, 9, 3, 4, 1, 4, 8, 5, 7, 1, 2, 7, 4, 2, 6, 5, 7, 4, 2, 3, 1, 7, 8, 6, 8, 4, 2, 8, 7, 1, 7, 5, 3, 4, 6, 3
Offset: 1

Views

Author

Robert G. Wilson v, Dec 08 2006

Keywords

Examples

			1.12291896713377033964828642958176157353142077385030633630831815209...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3, Landau-Ramanujan constant, p. 100.

Programs

  • Magma
    R:= RealField(100); 2*Exp(-EulerGamma(R)); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[2*Exp[-EulerGamma], 10, 111][[1]]
  • PARI
    default(realprecision, 100); 2*exp(-Euler) \\ G. C. Greubel, Sep 05 2018
    

Formula

Equals 2*A080130, 2*A001113^(-A001620) and 2/A073004 = 2/A068985^A001620.
Equals A088540 * A088541. - Jean-François Alcover, Jun 04 2014
Equals exp(A002162 - A001620). - John W. Nicholson, Apr 03 2015

A181110 Decimal expansion of 1/zeta(2) - 1/e^gamma, where gamma is the Euler-Mascheroni constant and zeta(2) = Pi^2/6.

Original entry on oeis.org

0, 4, 6, 4, 6, 7, 6, 1, 8, 2, 8, 7, 1, 4, 1, 4, 5, 8, 8, 3, 9, 1, 3, 3, 5, 6, 4, 4, 6, 7, 4, 8, 5, 0, 4, 6, 6, 6, 0, 4, 4, 2, 2, 6, 1, 1, 0, 8, 3, 2, 6, 1, 2, 4, 9, 1, 9, 4, 9, 5, 1, 1, 5, 3, 1, 9, 9, 5, 0, 7, 5, 8, 6, 9, 9, 1, 2, 7, 0, 1, 0, 0, 1, 4, 3, 8, 4, 4, 8, 4, 6, 1, 9, 5, 1, 6, 6, 6, 6, 9, 1, 4
Offset: 0

Views

Author

Jonathan Vos Post, Oct 03 2010

Keywords

Comments

Zeta(2) is A013661 and e^gamma is A073004.
Number theory use in Cellarosi et al., p. 9. Abstract: "We present a limit theorem describing the behavior of a probabilistic model for squarefree numbers. The limiting distribution has a density that comes from the Dickman-De Bruijn function and is constant on the interval [0,1]. We also provide estimates for the error term in the limit theorem."

Examples

			0.046467618287141458839133564467485...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 6/Pi(R)^2 - Exp(-EulerGamma(R)); // G. C. Greubel, Sep 06 2018
  • Mathematica
    Join[{0}, RealDigits[1/Zeta[2] - Exp[-EulerGamma], 10, 100][[1]]] (* G. C. Greubel, Sep 06 2018 *)
  • PARI
    1/zeta(2) - exp(-Euler) \\ Charles R Greathouse IV, Mar 10 2016
    

Formula

Equals A059956 - A080130.

Extensions

Offset and leading zeros normalized by R. J. Mathar, Oct 05 2010

A360895 Decimal expansion of exp(exp(-gamma)) where gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 7, 5, 3, 2, 2, 9, 4, 4, 3, 4, 9, 5, 6, 9, 4, 5, 8, 2, 2, 9, 7, 3, 6, 5, 4, 2, 9, 6, 4, 4, 0, 6, 1, 2, 8, 7, 6, 0, 5, 7, 4, 5, 8, 0, 2, 0, 2, 0, 7, 5, 4, 4, 5, 6, 1, 9, 0, 2, 9, 5, 1, 5, 6, 3, 1, 5, 3, 9, 8, 8, 9, 4, 0, 8, 7, 8, 0, 7, 2, 0, 6, 0, 7, 2, 4, 5, 3, 1, 0, 5, 5, 5, 8, 8, 8, 6, 7, 4, 0, 5, 2, 0, 2, 4, 3, 4, 3, 7, 6, 8, 4, 6, 4, 2
Offset: 1

Views

Author

Artur Jasinski, Feb 25 2023

Keywords

Comments

Theorem: Let p(n) be the smallest prime such that Product_{prime p<=p(n)} 1/(1-1/p) >= n. Then lim_{n->oo} p(n+1)/p(n) = exp(exp(-gamma)).
Proof. Follow Mertens's Third Theorem Product_{p<=x} 1/(1-1/p) ~ log(x)/exp(-gamma).
For any particular integer n, it follows from the equations n = log(x_n)/exp(-gamma) -> x_n = exp(n*exp(-gamma)) and n+1 = log(x_n+1)/exp(-gamma) -> x_n+1 = exp((n+1)*exp(-gamma)) that lim_{n->oo} exp((n+1)*exp(-gamma))/exp((n)*exp(-gamma)) = exp(exp(-gamma)).
Convergence table:
n p(n) truncated Euler product up to p(n) ratio p(n)/p(n-1)
42 17427088769 42.0000000010939727723681242652955 1.7532416978341651
43 30553756811 43.0000000012946363551468233325186 1.7532335558736718
44 53567706007 44.0000000002803554088007272169139 1.7532281329055578
45 93916601047 45.0000000002681963271546340553884 1.7532317145469581
46 164657625967 46.0000000002470257389410099668348 1.7532323799133028
47 288682860119 47.0000000001305074313442036255929 1.7532310357544971
48 506127311983 48.0000000000705764045487316221655 1.7532295189758258
oo oo oo 1.7532294434956945

Examples

			1.753229443495694582297365429644...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Exp[Exp[-EulerGamma]], 115]][[1]]
  • PARI
    exp(exp(-Euler)) \\ Michel Marcus, Feb 25 2023

Formula

Equals exp(A080130).
Limit_{n->oo} A091440(n+1)/A091440(n).
Limit_{n->oo} A061556(n+1)/A061556(n).
Limit_{n->oo} A167348(n+1)/A167348(n).

A049012 Composite numbers n such that number of nonprime d with 0 < d < n, gcd(n,d)=1, is pi(n).

Original entry on oeis.org

33, 75, 94, 106, 118, 1540, 2442, 5340
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that 2*A000720(n) = A000010(n) + A001221(n). - Max Alekseyev, Aug 22 2013
The sequence is finite since the l.h.s. grows as 2n/log(n), while the r.h.s. is asymptotically at least A080130*n/log(log(n)). In fact, known bounds for A000720 and A000010 imply that there are no terms above 10^7, and thus the sequence is full. - Max Alekseyev, Oct 29 2019

Examples

			gcd(33,d)=1: d=1,4,8,10,14,16,20,25,26,28,32, pi(33)=11, so 33 is a term.
		

Programs

  • PARI
    isok(n) = {if (isprime(n) , return (0)); nb = 0; for (d=1, n-1, if (! isprime(d) && gcd(n, d) == 1, nb++);); return (nb == primepi(n));} \\ Michel Marcus, Jul 14 2013

Extensions

More terms from Michel Marcus, Jul 14 2013
Keywords fini, full added by Max Alekseyev, Oct 29 2019

A235213 Nearest prime to (2^(e^-gamma))^n, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 23, 31, 47, 73, 107, 157, 233, 347, 509, 743, 1103, 1627, 2399, 3541, 5227, 7717, 11383, 16811, 24799, 36599, 54011, 79699, 117619, 173573, 256163, 378041, 557891, 823309, 1215017, 1793081, 2646167, 3905059, 5762969, 8504759, 12550991, 18522269
Offset: 2

Views

Author

Robert G. Wilson v, Jan 04 2014

Keywords

Comments

The nearest integer to (2^(e^-gamma))^n is very close to A018133.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = (2^Exp[-EulerGamma])^n}, Nearest[{NextPrime[a], NextPrime[a, -1]}, a][[1]]]; Array[f, 42, 2]
  • PARI
    a(n)=my(t=2^(exp(Euler)*n),mn=precprime(t),mx=nextprime(t)); if(mx-tCharles R Greathouse IV, Jan 04 2014

Formula

Nearest prime to (2^(e^-A001620))^n = (2^A080130)^n.

A241532 Decimal expansion of 2*e^(-2*gamma), gamma being the Euler constant.

Original entry on oeis.org

6, 3, 0, 4, 7, 3, 5, 0, 3, 3, 7, 4, 3, 8, 6, 7, 9, 6, 1, 2, 2, 0, 4, 0, 1, 9, 2, 7, 1, 0, 8, 7, 8, 9, 0, 4, 3, 5, 4, 5, 8, 7, 0, 7, 8, 7, 1, 2, 7, 3, 2, 3, 4, 1, 5, 7, 3, 8, 1, 7, 9, 8, 3, 7, 0, 8, 9, 7, 0, 0, 0, 3, 8, 2, 9, 9, 5, 8, 1, 9, 1, 1, 0, 1, 8, 9, 9, 5, 4, 1, 6, 5, 7, 8, 1, 7, 1, 9, 0, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 25 2014

Keywords

Comments

See Table 1, last row, first column, of the Bailey, Borwein and Crandall link. - Wolfdieter Lang, Apr 25 2014

Examples

			0.6304735033743867961220401927108789...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*E^(-2*EulerGamma), 10, 100] // First

Formula

Limit_{n -> infinity} (2^n/n!)*integral_{0..infinity} p*BesselK(0,p)^n dp. - after Bailey & Borwein.
Equals 2*A080130^2.

A321161 Decimal expansion of Wilf's formula: Product_{k>=1} exp(-1/k)*(1 + 1/k + 1/(2*k^2)) = exp(-gamma)*cosh(Pi/2)/(Pi/2).

Original entry on oeis.org

8, 9, 6, 8, 7, 1, 2, 4, 2, 1, 6, 7, 3, 7, 9, 0, 2, 1, 6, 9, 0, 2, 3, 0, 3, 1, 9, 0, 8, 6, 3, 6, 7, 0, 0, 5, 6, 2, 2, 5, 3, 0, 6, 4, 9, 0, 8, 1, 7, 0, 4, 8, 8, 6, 6, 8, 1, 5, 7, 7, 9, 0, 1, 6, 5, 1, 9, 6, 6, 4, 5, 2, 8, 0, 3, 9, 1, 5, 6, 8, 8, 1, 8, 6, 7, 3, 0
Offset: 0

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The formula was discovered by Wilf in 1997.

Examples

			0.896871242167379021690230319086367005622530649081704...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2011, p. 366.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-EulerGamma]*Cosh[Pi/2]/(Pi/2), 10, 100][[1]]
  • PARI
    exp(-Euler)*cosh(Pi/2)/(Pi/2) \\ Michel Marcus, Jan 15 2019
Previous Showing 21-30 of 32 results. Next