A113841
a(n) = a(n-1) + 2^A047240(n) for n>1, a(1)=1.
Original entry on oeis.org
1, 3, 7, 71, 199, 455, 4551, 12743, 29127, 291271, 815559, 1864135, 18641351, 52195783, 119304647, 1193046471, 3340530119, 7635497415, 76354974151, 213793927623, 488671834567, 4886718345671, 13682811367879, 31274997412295
Offset: 1
-
CoefficientList[Series[(1 + 2 x + 4 x^2) / ((-1 + x) (-1 + 4 x) (1 + 4 x + 16 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 19 2013 *)
LinearRecurrence[{1,0,64,-64},{1,3,7,71},30] (* Harvey P. Dale, Nov 18 2013 *)
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113860
Start with the binary representation of the Catalan constant (A104338, A006752) = 0.91596559... = sum_{i=1..infinity} b(i)/2^i, where b(i)=1,1,1,0,1,0,1,0,0,1,1,1,1.... Then a(n-1)=sum_{i=1..k: sum_{ j = 1..k} b(j)=n} b(i) * 2^(i-1). In words: scan the binary digits of the number, halt at each nonzero binary digit, add a power of 2 corresponding to the place of this digit after the comma, assign current partial sum to a(n), increment n.
Original entry on oeis.org
1, 3, 7, 23, 87, 599, 1623, 3671, 7767, 15959, 81495, 343639, 867927, 1916503, 18693719, 152911447, 421346903, 958217815, 2031959639, 4179443287, 12769377879, 1112281005655, 9908374027863, 27500560072279, 97869304249943
Offset: 0
A135482
a(n) = (1/4)*Sum_{j=1..n} 2^prime(j).
Original entry on oeis.org
0, 1, 3, 11, 43, 555, 2603, 35371, 166443, 2263595, 136481323, 673352235, 35033090603, 584788904491, 2783812160043, 37968184248875, 2289767997934123, 146404956073789995, 722865708377213483, 37616353855796316715, 627912164214501968427, 2989095405649324575275
Offset: 0
-
[&+[2^(NthPrime(k)-2): k in [1..n]]: n in [1..25]]; // Bruno Berselli, Sep 24 2015
-
A135482:= n-> add(2^ithprime(i)/4, i=1..n): seq(A135482(n), n=0..20); # Wesley Ivan Hurt, Feb 02 2014
-
Accumulate[Table[Floor[2^i/4],{i,Prime[Range[20]]}]] (* Harvey P. Dale, Dec 05 2013 *)
-
a(n) = sum(k=1, n, 2^prime(k))/4; \\ Michel Marcus, Oct 15 2016
A113867
a(n) = a(n-1) + 2^(A047258(n)) for n>1, a(1)=1.
Original entry on oeis.org
1, 17, 49, 113, 1137, 3185, 7281, 72817, 203889, 466033, 4660337, 13048945, 29826161, 298261617, 835132529, 1908874353, 19088743537, 53448481905, 122167958641, 1221679586417, 3420702841969, 7818749353073, 78187493530737
Offset: 1
-
CoefficientList[Series[(1 + 16 x + 32 x^2) / ((-1 + x) (- 1 + 4 x) (1 + 4 x + 16 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 20 2013 *)
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113870
a(n) = a(n-1) + 2^(k(n)), where k(n) is the n-th term of the sequence formed by k(1)=0 together with the numbers A042963.
Original entry on oeis.org
1, 3, 7, 39, 103, 615, 1639, 9831, 26215, 157287, 419431, 2516583, 6710887, 40265319, 107374183, 644245095, 1717986919, 10307921511, 27487790695, 164926744167, 439804651111, 2638827906663, 7036874417767, 42221246506599
Offset: 1
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113876
a(n) = a(n-1) + 2^(k(n)), where k(n) is the n-th term of the sequence formed by k(1)=0 together with the numbers A042964.
Original entry on oeis.org
1, 5, 13, 77, 205, 1229, 3277, 19661, 52429, 314573, 838861, 5033165, 13421773, 80530637, 214748365, 1288490189, 3435973837, 20615843021, 54975581389, 329853488333, 879609302221, 5277655813325, 14073748835533, 84442493013197, 225179981368525, 1351079888211149
Offset: 1
Edited with better definition and offset corrected by
Omar E. Pol, Jan 08 2009
A113914
(1,2,3) Jasinski-like positive power sequence.
Original entry on oeis.org
1, 5, 13, 29, 61, 131, 271, 569, 1381, 2789, 5581, 11171, 22369, 44741, 89491, 185543, 373273, 766229, 1532701, 3065411, 6130849, 12261701, 24700549, 49401101, 98802211, 202387391, 409557751, 819116231, 1638232471, 3276464969
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 3^1 = 5.
a(3) = 2*5 + 3^1 = 13.
a(4) = 2*13 + 3^1 = 29.
a(5) = 2*29 + 3^1 = 61.
a(6) = 2*61 + 3^2 = 271.
a(7) = 2*271 + 3^2 = 569.
a(32) = 2*6553461379 + 3^49 = 239299329230630636512841. Here 49 is a record value for the exponent.
A333392
a(0) = 1; thereafter a(n) = 2^(prime(n)-1) + Sum_{k=1..n} 2^(prime(n)-prime(k)).
Original entry on oeis.org
1, 3, 7, 29, 117, 1873, 7493, 119889, 479557, 7672913, 491066433, 1964265733, 125713006913, 2011408110609, 8045632442437, 128730119078993, 8238727621055553, 527278567747555393, 2109114270990221573, 134983313343374180673, 2159733013493986890769, 8638932053975947563077
Offset: 0
a(7) = 119889 (in base 10) = 11101010001010001 (in base 2).
||| | | | | |
123 5 7 1113 17
Cf.
A000040,
A008578,
A010051,
A034785,
A051006,
A072762,
A076793,
A080339,
A080355,
A121240,
A139104,
A333393.
-
a[0] = 1; a[n_] := 2^(Prime[n] - 1) + Sum[2^(Prime[n] - Prime[k]), {k, 1, n}]; Table[a[n], {n, 0, 21}]
-
a(n) = if (n==0, 1, 2^(prime(n)-1) + sum(k=1, n, 2^(prime(n)-prime(k)))); \\ Michel Marcus, Mar 18 2020
A113927
a(1)=1, and recursively a(n+1) is the smallest prime p of the form p = 2*a(n) + 5^k for some k>0.
Original entry on oeis.org
1, 7, 19, 43, 211, 547, 4219, 8443, 17011, 34147, 71419, 142963, 1220989051, 3662681227, 19080811690579, 38161623381163, 76324467465451, 152648936884027, 305299094471179, 4656613483675581520483
Offset: 1
a(1) = 1 by definition.
a(2) = 2*1 + 5^1 = 7.
a(3) = 2*7 + 5^1 = 19.
a(4) = 2*19 + 5^1 = 43.
a(5) = 2*43 + 5^3 = 211.
a(6) = 2*211 + 5^3 = 547.
a(7) = 2*547 + 5^5 = 4219.
a(13) = 2*142963 + 5^13 = 1220989051.
a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent.
a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.
Original entry on oeis.org
2, 4, 9, 36, 6561, 252252704150178, 1650016588712720468
Offset: 1
a(6)-a(7) using Kim Walisch's primecount, from
Amiram Eldar, Mar 13 2020
Comments