cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A147964 Number of consistent sets of 10 irreflexive binary order relationships over n objects.

Original entry on oeis.org

120, 691020, 128047374, 6519340912, 156097542888, 2259242749800, 22815705739244, 175939638868224, 1099964624581680, 5812510584460580, 26753072198342490, 109684475412107232, 407515671392921520, 1390695205822539984, 4406577363489470616, 13079027432832437440
Offset: 5

Views

Author

R. H. Hardin, May 04 2009

Keywords

Crossrefs

Related sequences for the number of consistent sets of k irreflexive binary order relationships over n objects: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9).
Column k = 10 of A081064.

Programs

  • Mathematica
    Table[(n - 4)*(n - 3)*(n - 2)*(n - 1)*n*(n^15 - 80*n^13 - 300*n^12 + 1366*n^11 + 18300*n^10 + 117700*n^9 + 293220*n^8 - 4873571*n^7 - 63731100*n^6 - 168619940*n^5 + 2528179320*n^4 + 17989477164*n^3 - 56994404400*n^2 - 561199055760*n + 1856094609600)/3628800, {n, 5, 20}] (* Wesley Ivan Hurt, Apr 12 2020 *)

Formula

a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^15 - 80*n^13 - 300*n^12 + 1366*n^11 + 18300*n^10 + 117700*n^9 + 293220*n^8 - 4873571*n^7 - 63731100*n^6 - 168619940*n^5 + 2528179320*n^4 + 17989477164*n^3 - 56994404400*n^2 - 561199055760*n + 1856094609600)/3628800. - Vaclav Kotesovec, Apr 11 2020

Extensions

More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed to n=5 by Petros Hadjicostas, Apr 11 2020

A342587 Triangle, read by rows: T(n,k) is the number of labeled order relations on n nodes in which the longest chain has k nodes (n>=1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199357704, 71310960, 11481120, 987840, 40320, 1, 243593040, 11012710470, 21774014640, 9501062760, 1781015040
Offset: 1

Views

Author

R. J. Mathar and Brendan McKay, Mar 16 2021

Keywords

Comments

Corrects Comtet's table for k=4 and 5 in row n=8.

Examples

			Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
  1;
  1,      2;
  1,     12,       6;
  1,     86,     108,      24;
  1,    840,    2310,     960,    120;
  1,  11642,   65700,   42960,   9000,   720;
  1, 227892, 2583126, 2510760, 712320, 90720, 5040;
  ...
		

Crossrefs

Cf. A000142 (diagonal), A001035 (row sums), A055531 (k=2), A055532 (k=3), A055533 (subdiagonal), A055534 (subdiagonal), A081064, A342501 (connected).

A350447 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs, n >=0, k = 0..(n-1)*n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 9, 9, 6, 1, 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1, 1, 1, 4, 13, 51, 163, 407, 796, 1169, 1291, 1057, 649, 281, 85, 15, 1, 1, 1, 4, 13, 54, 215, 846, 2690, 7253, 15703, 27596, 39057, 44902, 41723, 31336, 18844, 8983, 3325, 920, 180, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1, 1;
  [3] 1, 1, 3,  1;
  [4] 1, 1, 4,  9,  9,  6,  1;
  [5] 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1;
  ...
		

Crossrefs

The labeled version is A081064.
Row sums are A003087.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=AcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }

A350487 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n labeled nodes with k arcs and a global source, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 2, 0, 0, 9, 6, 0, 0, 0, 64, 132, 96, 24, 0, 0, 0, 0, 625, 2640, 4850, 4900, 2850, 900, 120, 0, 0, 0, 0, 0, 7776, 55800, 186480, 379170, 516660, 491040, 328680, 152640, 46980, 8640, 720, 0, 0, 0, 0, 0, 0, 117649, 1286670, 6756120, 22466010
Offset: 1

Views

Author

Andrew Howroyd, Jan 01 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 9,  6;
  [4] 0, 0, 0, 64, 132,   96,   24;
  [5] 0, 0, 0,  0, 625, 2640, 4850, 4900, 2850, 900, 120;
  ...
		

Crossrefs

Row sums are A003025.
Leading diagonal is A000169.
The unlabeled version is A350488.
Cf. A081064.

Programs

  • PARI
    T(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1)*binomial(n,k)*((1+'y)^(n-k)-1)^k*a[n-k])); [Vecrev(p) | p <- a]}
    { my(A=T(6)); for(n=1, #A, print(A[n])) }

A350909 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n labeled nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 2, 0, 0, 12, 6, 0, 0, 0, 128, 186, 108, 24, 0, 0, 0, 0, 2000, 5640, 7840, 6540, 3330, 960, 120, 0, 0, 0, 0, 0, 41472, 189480, 456720, 730830, 832370, 690300, 416160, 178230, 51480, 9000, 720, 0, 0, 0, 0, 0, 0, 1075648, 7178640, 26035800, 65339820
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 12,   6;
  [4] 0, 0,  0, 128,  186,  108,   24;
  [5] 0, 0,  0,   0, 2000, 5640, 7840, 6540, 3330, 960, 120;
  ...
		

Crossrefs

Row sums are A082402.
Leading diagonal is A097629.
The unlabeled version is A350449.

Programs

  • PARI
    G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*(1+y)^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)}
    row(n)={Vecrev(n!*polcoef(log(G(n)), n))}
    { for(n=1, 6, print(row(n))) }

A008285 Erroneous version of A342587.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 86, 108, 24, 1, 840, 2310, 960, 120, 1, 11642, 65700, 42960, 9000, 720, 1, 227892, 2583126, 2510760, 712320, 90720, 5040, 1, 6285806, 142259628, 199424904, 71243760, 11481120, 987840, 40320
Offset: 1

Views

Author

Keywords

Examples

			Triangle T(n,k) (with n >= 1 and 1 <= k <= n) begins as follows:
  1;
  1,      2;
  1,     12,       6;
  1,     86,     108,      24;
  1,    840,    2310,     960,    120;
  1,  11642,   65700,   42960,   9000,   720;
  1, 227892, 2583126, 2510760, 712320, 90720, 5040;
  ...
		

Crossrefs

Cf. A000142 (diagonal), A001035 (row sums), A055531 (k=2), A055532 (k=3), A055533 (subdiagonal), A081064, A342501 (connected).
Previous Showing 11-16 of 16 results.