cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A185025 Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n} -> {1,2,...,n} that have exactly k 2-cycles for n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 3, 1, 18, 9, 163, 90, 3, 1950, 1100, 75, 28821, 16245, 1575, 15, 505876, 283122, 33810, 735, 10270569, 5699932, 780150, 26460, 105, 236644092, 130267440, 19615932, 884520, 8505, 6098971555, 3332614725, 538325550, 29619450, 467775, 945
Offset: 0

Views

Author

Geoffrey Critzer, Dec 24 2012

Keywords

Comments

It appears that as n gets large, row n conforms to a Poisson distribution with mean = 1/2. In other words, as n gets large, T(n,k) approaches n^n/(2^k*k!*e^(1/2)).

Examples

			Triangle begins:
           1;
           1;
           3,          1;
          18,          9;
         163,         90,         3;
        1950,       1100,        75;
       28821,      16245,      1575,       15;
      505876,     283122,     33810,      735;
    10270569,    5699932,    780150,    26460,    105;
   236644092,  130267440,  19615932,   884520,   8505;
  6098971555, 3332614725, 538325550, 29619450, 467775, 945;
  ...
		

Crossrefs

Column k=0 gives A089466.

Programs

  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t^2/2(y-1)]/(1-t), {x,0,nn}], {x,y}]//Grid

Formula

E.g.f.: exp((T(x)^2/2)*(y-1))/(1 - T(x)) where T(x) is the e.g.f. for A000169.
Sum_{k=1..floor(n/2)} k * T(n,k) = A081131(n).

A225213 Triangular array read by rows. T(n,k) is the number of cycles in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n} that have length k; 1<=k<=n.

Original entry on oeis.org

1, 4, 1, 27, 9, 2, 256, 96, 32, 6, 3125, 1250, 500, 150, 24, 46656, 19440, 8640, 3240, 864, 120, 823543, 352947, 168070, 72030, 24696, 5880, 720, 16777216, 7340032, 3670016, 1720320, 688128, 215040, 46080, 5040
Offset: 1

Views

Author

Geoffrey Critzer, May 01 2013

Keywords

Comments

Row sums = A190314(n)
Sum_{k=1..n} T(n,k)*k = A063169(n)
T(n,n) = (n-1)!
Column 1 = n^n = A000312
Column 2 = A081131

Examples

			1,
4,      1,
27,     9,      2,
256,    96,     32,     6,
3125,   1250,   500,    150,   24,
46656,  19440,  8640,   3240,  864,   120,
823543, 352947, 168070, 72030, 24696, 5880, 720
		

Programs

  • Mathematica
    Table[Table[(j-1)!Binomial[n,j]n^(n-j),{j,1,n}],{n,1,8}]//Grid

Formula

T(n,k) = (k-1)!*binomial(n,k)*n^(n-k)
E.g.f. for column k: A(x)^k/k * B(x) where A(x) is e.g.f. for A000169 and B(x) is e.g.f. for A000312.

A345632 Sum of terms of even index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the even part.

Crossrefs

Cf. A345633 (odd part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor(n/2)} n^(2k) binomial(n, 2k).
a(n+1) = ((1 - n)^n + (1 + n)^n)/2. - Stefano Spezia, Jun 21 2021

A345633 Sum of terms of odd index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

0, 1, 4, 36, 272, 4400, 51012, 1188544, 18640960, 567108864, 11225320100, 421504185344, 10079828372880, 450353989316608, 12627774819845668, 654244800082329600, 21046391759976988928, 1240529732459024678912, 45032132922921758270916, 2975557672677668838178816
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the odd part. See the Formula section.

Crossrefs

Cf. A345632 (even part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n - 1)^(2 k + 1) Binomial[n - 1, 2 k + 1], {k, 0, Floor[(n - 1)/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor((n-1)/2)} n^(2k+1)*binomial(n, 2k+1).
a(n+1) = ((1 + n)^n - (1 - n)^n)/2.

A383036 The determinant of the matrix representing a totally anti-symmetric quasigroup of order 2*n+1.

Original entry on oeis.org

0, 9, 1250, 352947, 172186884, 129687123005, 139788510734886, 204350482177734375, 389289535005334947848, 937146152681201173795569, 2782184294469515486371964010, 9986310782535957929474146174619, 42632564145606011152267456054687500, 213501642487388555901009081409220318757
Offset: 0

Views

Author

Darío Clavijo, May 21 2025

Keywords

Comments

A totally antisymmetric quasigroup of order 2*n+1 is constructed in a way such that M[i][j] != M[j][i] for i!=j with m = 2*n+1, k = 2 and M[j][i] = k*(j-i) mod m for 0 <= j,i < m.
For any k != 0 mod m the resulting matrix M has the same determinant for each n.
Also the resulting matrix M is circulant and a Latin square.

Examples

			For n = 1, a(1) = 9 because:
The resulting totally anti-symetric quasigroup has a matrix:
with k = 1:
  0, 1, 2,
  2, 0, 1,
  1, 2, 0
which has a determinant: 9.
with k = 2:
  0, 2, 1,
  1, 0, 2,
  2, 1, 0
has also the same determinant 9.
		

Crossrefs

Programs

Formula

a(n) = n*(2*n+1)^(2*n) = A081131(2*n+1).

A249632 Triangular array read by rows. T(n,k) is the number of labeled trees with black and white nodes having exactly k black nodes, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 9, 9, 3, 16, 64, 96, 64, 16, 125, 625, 1250, 1250, 625, 125, 1296, 7776, 19440, 25920, 19440, 7776, 1296, 16807, 117649, 352947, 588245, 588245, 352947, 117649, 16807, 262144, 2097152, 7340032, 14680064, 18350080, 14680064, 7340032, 2097152, 262144
Offset: 0

Views

Author

Geoffrey Critzer, Nov 02 2014

Keywords

Comments

Row sums = A038058.
T(n,n) = T(n,0) = n^(n-2) free trees A000272.
T(n,n-1) = T(n,1) = n^(n-1) rooted trees A000169.
T(n,2) = A081131.

Examples

			1,
1,    1,
1,    2,    1,
3,    9,    9,     3,
16,   64,   96,    64,    16,
125,  625,  1250,  1250,  625,   125,
1296, 7776, 19440, 25920, 19440, 7776, 1296
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press,1973, page 30, exercise 1.10.

Programs

  • Mathematica
    nn = 6; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}];
    Map[Select[#, # > 0 &] &,
      Range[0, nn]! CoefficientList[
        Series[f[x + y x] + 1, {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: A(x + y*x) where A(x) is the e.g.f. for A000272.
Previous Showing 11-16 of 16 results.