A185025
Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n} -> {1,2,...,n} that have exactly k 2-cycles for n >= 0 and 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 1, 3, 1, 18, 9, 163, 90, 3, 1950, 1100, 75, 28821, 16245, 1575, 15, 505876, 283122, 33810, 735, 10270569, 5699932, 780150, 26460, 105, 236644092, 130267440, 19615932, 884520, 8505, 6098971555, 3332614725, 538325550, 29619450, 467775, 945
Offset: 0
Triangle begins:
1;
1;
3, 1;
18, 9;
163, 90, 3;
1950, 1100, 75;
28821, 16245, 1575, 15;
505876, 283122, 33810, 735;
10270569, 5699932, 780150, 26460, 105;
236644092, 130267440, 19615932, 884520, 8505;
6098971555, 3332614725, 538325550, 29619450, 467775, 945;
...
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t^2/2(y-1)]/(1-t), {x,0,nn}], {x,y}]//Grid
A225213
Triangular array read by rows. T(n,k) is the number of cycles in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n} that have length k; 1<=k<=n.
Original entry on oeis.org
1, 4, 1, 27, 9, 2, 256, 96, 32, 6, 3125, 1250, 500, 150, 24, 46656, 19440, 8640, 3240, 864, 120, 823543, 352947, 168070, 72030, 24696, 5880, 720, 16777216, 7340032, 3670016, 1720320, 688128, 215040, 46080, 5040
Offset: 1
1,
4, 1,
27, 9, 2,
256, 96, 32, 6,
3125, 1250, 500, 150, 24,
46656, 19440, 8640, 3240, 864, 120,
823543, 352947, 168070, 72030, 24696, 5880, 720
-
Table[Table[(j-1)!Binomial[n,j]n^(n-j),{j,1,n}],{n,1,8}]//Grid
A345632
Sum of terms of even index in the binomial decomposition of n^(n-1).
Original entry on oeis.org
1, 1, 5, 28, 353, 3376, 66637, 908608, 24405761, 432891136, 14712104501, 321504185344, 13218256749601, 343360783937536, 16565151205544957, 498676704524517376, 27614800115689879553, 945381827279671853056, 59095217374989483261925, 2267322327322331161821184, 157904201452248753415276001
Offset: 1
-
Table[Plus @@ Table[(n-1)^(2 k) Binomial[n-1, 2 k], {k, 0, Floor[n/2]}], {n, 1, 21}]
A345633
Sum of terms of odd index in the binomial decomposition of n^(n-1).
Original entry on oeis.org
0, 1, 4, 36, 272, 4400, 51012, 1188544, 18640960, 567108864, 11225320100, 421504185344, 10079828372880, 450353989316608, 12627774819845668, 654244800082329600, 21046391759976988928, 1240529732459024678912, 45032132922921758270916, 2975557672677668838178816
Offset: 1
-
Table[Plus @@ Table[(n - 1)^(2 k + 1) Binomial[n - 1, 2 k + 1], {k, 0, Floor[(n - 1)/2]}], {n, 1, 21}]
A383036
The determinant of the matrix representing a totally anti-symmetric quasigroup of order 2*n+1.
Original entry on oeis.org
0, 9, 1250, 352947, 172186884, 129687123005, 139788510734886, 204350482177734375, 389289535005334947848, 937146152681201173795569, 2782184294469515486371964010, 9986310782535957929474146174619, 42632564145606011152267456054687500, 213501642487388555901009081409220318757
Offset: 0
For n = 1, a(1) = 9 because:
The resulting totally anti-symetric quasigroup has a matrix:
with k = 1:
0, 1, 2,
2, 0, 1,
1, 2, 0
which has a determinant: 9.
with k = 2:
0, 2, 1,
1, 0, 2,
2, 1, 0
has also the same determinant 9.
A249632
Triangular array read by rows. T(n,k) is the number of labeled trees with black and white nodes having exactly k black nodes, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 9, 9, 3, 16, 64, 96, 64, 16, 125, 625, 1250, 1250, 625, 125, 1296, 7776, 19440, 25920, 19440, 7776, 1296, 16807, 117649, 352947, 588245, 588245, 352947, 117649, 16807, 262144, 2097152, 7340032, 14680064, 18350080, 14680064, 7340032, 2097152, 262144
Offset: 0
1,
1, 1,
1, 2, 1,
3, 9, 9, 3,
16, 64, 96, 64, 16,
125, 625, 1250, 1250, 625, 125,
1296, 7776, 19440, 25920, 19440, 7776, 1296
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press,1973, page 30, exercise 1.10.
-
nn = 6; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}];
Map[Select[#, # > 0 &] &,
Range[0, nn]! CoefficientList[
Series[f[x + y x] + 1, {x, 0, nn}], {x, y}]] // Grid
Comments