cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A361598 Expansion of e.g.f. exp( x/(1-x)^2 ) / (1-x).

Original entry on oeis.org

1, 2, 9, 58, 473, 4626, 52537, 677594, 9762993, 155175778, 2693718281, 50657791482, 1025158123849, 22198908725618, 511885585833273, 12517101011344666, 323402336324055137, 8800318580852865474, 251497162228635927433, 7529081846683064675258
Offset: 0

Views

Author

Seiichi Manyama, Mar 17 2023

Keywords

Crossrefs

Column k=2 of A361600.
Cf. A082579.

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n+k,2*k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^2)/(1-x)))

Formula

a(n) = n! * Sum_{k=0..n} binomial(n+k,2*k)/k! = Sum_{k=0..n} (n+k)!/(2*k)! * binomial(n,k).
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = (3*n - 1)*a(n-1) - (n-1)*(3*n - 5)*a(n-2) + (n-2)^2*(n-1)*a(n-3).
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(-1/12 + 3*2^(-2/3)*n^(2/3) - n) * n^(n + 1/6) * (1 + 1/(2^(2/3)*n^(1/3)) + 83/(360*2^(1/3)*n^(2/3))). (End)

A362775 E.g.f. satisfies A(x) = exp( x/(1-x)^2 * A(x) ).

Original entry on oeis.org

1, 1, 7, 70, 965, 17216, 379207, 9969772, 305154313, 10668593008, 419714689931, 18358646058644, 884070662867053, 46486344447041032, 2650567497877525423, 162908800485532424236, 10737607698626311094033, 755571950776792829919968
Offset: 0

Views

Author

Seiichi Manyama, May 02 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))))

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^2) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+k-1,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: -LambertW(-x/(1-x)^2) * (1-x)^2 / x.
a(n) ~ 2^(n + 1/2) * sqrt(1 + 4*exp(-1) - sqrt(1 + 4*exp(-1))) * n^(n-1) / ((-1 + sqrt(1 + 4*exp(-1)))^(3/2) * (1 + 2*exp(-1) - sqrt(1 + 4*exp(-1)))^(n - 1/2) * exp(2*n-1)). (End)

A373620 Expansion of e.g.f. exp(x / (1 - x^2)^2).

Original entry on oeis.org

1, 1, 1, 13, 49, 481, 3841, 38221, 464353, 5368609, 82042561, 1151767981, 20242097041, 342921513793, 6705416722369, 133590317946541, 2880298682358721, 65597610230669761, 1556262483879791233, 39569880403136366029, 1030778206965403668721
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • Maple
    A373620 := proc(n)
        add(binomial(2*n-3*k-1,k)/(n-2*k)!,k=0..floor(n/2)) ;
        %*n! ;
    end proc:
    seq(A373620(n),n=0..80) ; # R. J. Mathar, Jun 11 2024
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(2*n-3*k-1, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k)/(n-2*k)!.
a(n) == 1 mod 12.
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(1/48 + 2^(-5/3)*n^(1/3) + 3*2^(-4/3)*n^(2/3) - n) * n^(n - 1/6). - Vaclav Kotesovec, Jun 11 2024
D-finite with recurrence a(n) -a(n-1) -3*(n-1)*(n-2)*a(n-2) -3*(n-1)*(n-2)*a(n-3) +3*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 11 2024

A380511 Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 55, 961, 23141, 711421, 26631235, 1175535425, 59786520841, 3442729157461, 221413508687471, 15730688410899265, 1223574846548300845, 103417508018836074701, 9437941200860641295611, 924934291227615821904001, 96881241931552168636182545, 10801002623361396194857667365
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.
a(n) = U(1-n, 2-3*n, 1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x*(1-x)^2 ) ). - Seiichi Manyama, Mar 15 2025

A353162 Expansion of e.g.f. exp(Sum_{p prime} p * x^p).

Original entry on oeis.org

1, 0, 4, 18, 48, 1320, 4200, 115920, 994560, 11793600, 264055680, 2601244800, 67761429120, 1067726499840, 21513457405440, 485310649824000, 9925206939648000, 254012624170905600, 6174538264806912000, 160933619800835481600, 4458470291543671603200
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*k*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, isprime(k)*k^2*a(n-k)/(n-k)!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{p<=n, p prime} p^2 * a(n-p)/(n-p)!.

A364939 E.g.f. satisfies A(x) = exp( x*A(x) / (1 - x*A(x))^2 ).

Original entry on oeis.org

1, 1, 7, 82, 1421, 32856, 953107, 33316816, 1364109273, 64057409920, 3394727354591, 200445915043584, 13050860745456613, 928976320999078912, 71773343988758253675, 5982029183718123513856, 535011546414154955711153, 51110145581257562326401024
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[(n+1)^(k-1) * Binomial[n+k-1,n-k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 11 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(n+k-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(n+k-1,n-k)/k!.
a(n) ~ sqrt(((321*(3852 + 215*sqrt(321)))^(1/3) - 321^(2/3)/(3852 + 215*sqrt(321))^(1/3)) / 107) * (4 + ((83 - 3*sqrt(321))/2)^(1/3) + ((83 + 3*sqrt(321))/2)^(1/3))^n * exp(((215 - 12*sqrt(321))^(1/3) + (215 + 12*sqrt(321))^(1/3) - 1) * (n+1)/12 - n) * n^(n-1) / 3^(n + 1/2). - Vaclav Kotesovec, Nov 11 2023
E.g.f.: (1/x) * Series_Reversion( x*exp(-x/(1 - x)^2) ). - Seiichi Manyama, Sep 23 2024

A387244 Expansion of e.g.f. exp(x^2/(1-x)^4).

Original entry on oeis.org

1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2025

Keywords

Comments

In general, if s >= 1, 1 <= r <= s and e.g.f. = exp(x^r/(1-x)^s) then for n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + (s-r)*k - 1, s*k - 1)/k!.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
  • Mathematica
    nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
    nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
    Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]

Formula

For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + 2*k - 1, 4*k - 1)/k!.
a(n) = 5*(n-1)*a(n-1) - 2*(n-1)*(5*n-11)*a(n-2) + 2*(n-2)*(n-1)*(5*n-14)*a(n-3) - 5*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 2^(1/5) * 5^(-1/2) * exp(1/80 - 2^(-9/5)*n^(2/5)/3 + 5*2^(-8/5)*n^(4/5) - n) * n^(n - 1/10).

A270669 E.g.f.: Product_{k>=1} (1 + sinh(k*x^k)).

Original entry on oeis.org

1, 1, 4, 31, 168, 1841, 19320, 226885, 2655408, 47569681, 743996880, 12582916061, 245804712120, 4831304993113, 109782586920552, 2669560767444901, 61579705719702240, 1566459883903878305, 44585240861695115808, 1212424119941953292461, 37517727808419084095400
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 25; Range[0, nn]! * CoefficientList[Series[Product[1+Sinh[k*x^k], {k, 1, nn}], {x, 0, nn}], x]

A293785 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j>=1} j^(k-1)*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 5, 13, 24, 1, 1, 9, 31, 73, 120, 1, 1, 17, 79, 241, 501, 720, 1, 1, 33, 211, 841, 2261, 4051, 5040, 1, 1, 65, 583, 3049, 10821, 24781, 37633, 40320, 1, 1, 129, 1651, 11353, 54221, 162601, 309835, 394353, 362880, 1, 1, 257
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2017

Keywords

Examples

			Square array begins:
     1,   1,    1,     1,     1, ...
     1,   1,    1,     1,     1, ...
     2,   3,    5,     9,    17, ...
     6,  13,   31,    79,   211, ...
    24,  73,  241,   841,  3049, ...
   120, 501, 2261, 10821, 54221, ...
		

Crossrefs

Columns k=0..4 give A000142, A000262, A082579, A255807, A255819.
Rows n=0-1 give A000012.
Main diagonal gives A293786.

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j^k*A(n-j,k)/(n-j)! for n > 0.

A328054 Expansion of e.g.f. log(1 + x / (1 - x)^2).

Original entry on oeis.org

0, 1, 3, 8, 18, 24, 0, 720, 15120, 161280, 1088640, 3628800, 0, 479001600, 18681062400, 348713164800, 3923023104000, 20922789888000, 0, 6402373705728000, 364935301226496000, 9731608032706560000, 153272826515128320000, 1124000727777607680000, 0, 620448401733239439360000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2019

Keywords

Comments

Logarithmic transform of A001563.

Crossrefs

Cf. A001563, A008588 (positions of 0's), A009306, A082579, A328055.

Programs

  • Maple
    b:= proc(n) option remember; n*n! end:
    a:= proc(n) option remember; `if`(n=0, 0, b(n)-
          add(binomial(n, j)*j*b(n-j)*a(j), j=1..n-1)/n)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 04 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Log[1 + x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
    Join[{0}, Table[2 (n - 1)! (1 - Cos[Pi n/3]), {n, 1, 25}]]
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(serlaplace(log(1 + x / (1 - x)^2)))) \\ Michel Marcus, Oct 04 2019

Formula

E.g.f.: log(1 + Sum_{k>=1} k * x^k).
D-finite with recurrence a(n+3) = n*(n+1)*(n+2)*a(n) - 2*(n+2)*(n+1)*a(n+1) + 2*(n+2)*a(n+2). - Robert Israel, Jan 16 2023
Previous Showing 11-20 of 26 results. Next