A162007
Third left hand column of the EG1 triangle A162005.
Original entry on oeis.org
1, 270, 36096, 4766048, 704357760, 120536980224, 24060789342208, 5590122715250688, 1503080384197754880, 464520829174515630080, 163839204411117787938816, 65500849343294249018327040
Offset: 3
Third left hand column of the EG1 triangle
A162005.
-
nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=3; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
A162006
Second left hand column of the EG1 triangle A162005.
Original entry on oeis.org
1, 28, 1032, 52736, 3646208, 330545664, 38188155904, 5488365862912, 961530104709120, 201865242068910080, 50052995352723193856, 14476381898608390176768, 4831399425299156001882112
Offset: 2
Second left hand column of the EG1 triangle
A162005.
-
nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=2; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
A085734
Triangle read by rows: T(0,0) = 1, T(n,k) = Sum_{j=max(0,1-k)..n-k} (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j).
Original entry on oeis.org
1, 2, 3, 16, 30, 15, 272, 588, 420, 105, 7936, 18960, 16380, 6300, 945, 353792, 911328, 893640, 429660, 103950, 10395, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 1903757312, 5464904448, 6327135360, 3918554640, 1427025600, 310269960, 37837800, 2027025
Offset: 0
Triangle begins as:
1;
2, 3;
16, 30, 15;
272, 588, 420, 105; ...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles , JIS 9 (2006) 06.4.1.
- Tian Han, Sergey Kitaev, and Philip B. Zhang, Distribution of maxima and minima statistics on alternating permutations, Springer numbers, and avoidance of flat POPs, arXiv:2408.12865 [math.CO], 2024. See p. 4.
- Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
T(n, 0) =
A000182(n), tangent numbers, T(n, n) =
A001147(n+1), Sum_{k>=0} T(n, k) =
A000364(n+1), Euler numbers.
-
t[n_, k_]:= t[n, k] = Sum[(2^j)*(Binomial[k+j, 1+j] + Binomial[k+j+1, 1+j])*t[n-1, k-1+j], {j, Max[0, 1-k], n-k}]; t[0, 0] = 1; Table[t[n, k], {n,0,7}, {k,0,n}]//Flatten (* Jean-François Alcover, Feb 26 2013 *)
-
T(n,m):=sum((stirling1(k,m)*sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(n+m+i),i,0,k-1))/(2^(k-1)*k!),k,1,n); /* Vladimir Kruchinin, May 20 2013 */
-
{T(n,k) = if(n==0 && k==0, 1, sum(j=max(0, 1-k), n-k, (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j)))};
for(n=0,5, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 21 2019
-
@CachedFunction
def T(n,k):
if n==0 and k==0: return 1
else: return sum((2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j) for j in (max(0, 1-k)..(n-k)))
[[T(n, k) for k in (0..n)] for n in (0..7)] # G. C. Greubel, Mar 21 2019
A094346
Another version of triangular array in A036970: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 3, 8, 6, 0, 17, 54, 60, 24, 0, 155, 556, 762, 480, 120, 0, 2073, 8146, 12840, 10248, 4200, 720, 0, 38227, 161424, 282078, 263040, 139440, 40320, 5040, 0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 3, 8, 6;
0, 17, 54, 60, 24;
0, 155, 556, 762, 480, 120;
0, 2073, 8146, 12840, 10248, 4200, 720;
0, 38227, 161424, 282078, 263040, 139440, 40320, 5040;
0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320; ...
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914
- Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. (Has a signed version of this triangle, see p. 1).
-
G[_, 1] = 1;
G[x_, n_] := G[x, n] = (x+1)^2 G[x+1, n-1] - x^2 G[x, n-1] // Expand;
row[0] = {1};
row[n_] := CoefficientList[x G[x, n], x];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
-
{T(n, k) = local( A = x); if( k<0 || k>n, 0, for( j = 1, n, A = x^2 * ( subst(A, x, x+1) - A)); polcoeff( A, k+1))} /* Michael Somos, Apr 10 2011 */
Comments