A267938
Decimal representation of the n-th iteration of the "Rule 251" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 5, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
rule=251; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
A331893
Positive numbers k such that both k and -k are a palindromes in negabinary representation.
Original entry on oeis.org
1, 5, 7, 17, 21, 31, 57, 65, 85, 127, 155, 217, 257, 273, 325, 341, 455, 511, 635, 857, 889, 993, 1025, 1105, 1253, 1285, 1365, 1799, 2047, 2159, 2555, 2667, 3417, 3577, 3641, 3937, 4097, 4161, 4369, 4433, 4965, 5125, 5189, 5397, 5461, 6951, 7175, 7967, 8191
Offset: 1
5 is a term since the negabinary representation of 5, 101, and the negabinary representation of -5, 1111, are both palindromic.
-
negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; nbPalinQ[n_] := And @@ (PalindromeQ @ negabin[#] & /@ {n, -n}); Select[Range[2^13], nbPalinQ]
A084181
2^n+(-2)^n-(-1)^n.
Original entry on oeis.org
1, 1, 7, 1, 31, 1, 127, 1, 511, 1, 2047, 1, 8191, 1, 32767, 1, 131071, 1, 524287, 1, 2097151, 1, 8388607, 1, 33554431, 1, 134217727, 1, 536870911, 1, 2147483647, 1, 8589934591, 1, 34359738367, 1, 137438953471, 1, 549755813887, 1, 2199023255551
Offset: 0
-
LinearRecurrence[{-1,4,4},{1,1,7},50] (* or *) Riffle[ LinearRecurrence[ {5,-4},{1,7},30],1] (* Harvey P. Dale, Jan 02 2019 *)
A084184
Partial sums of a Jacobsthal related sequence.
Original entry on oeis.org
0, 1, 2, 7, 10, 31, 42, 127, 170, 511, 682, 2047, 2730, 8191, 10922, 32767, 43690, 131071, 174762, 524287, 699050, 2097151, 2796202, 8388607, 11184810, 33554431, 44739242, 134217727, 178956970, 536870911, 715827882, 2147483647, 2863311530, 8589934591
Offset: 0
-
A084184:=n->(5-(-1)^n)*(2^n-1)/6: seq(A084184(n), n=0..50); # Wesley Ivan Hurt, Jan 28 2017
-
LinearRecurrence[{0,5,0,-4},{0,1,2,7},40] (* Harvey P. Dale, Jan 18 2015 *)
-
concat(0, Vec(x*(1+2*x+2*x^2)/((1-x^2)*(1-4*x^2)) + O(x^40))) \\ Colin Barker, Sep 09 2016
A137215
a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
Original entry on oeis.org
3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0
a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
-
Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
-
a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
-
[3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022
Original entry on oeis.org
1, 3, 7, 14, 22, 33, 46, 60, 76, 95, 116, 138, 163, 189, 217, 248, 280, 315, 352, 390, 431, 473, 517, 564, 613, 663, 715, 770, 826, 885, 946, 1008, 1072, 1139, 1208, 1278, 1351, 1425, 1501, 1580, 1661, 1743, 1827, 1914, 2002, 2093, 2186, 2280, 2377, 2475, 2575
Offset: 1
a(65) = 1 + 2 + 4 + 7 + 8 + 11 + 13 + 14 + 16 + 19 + 21 + 22 + 25 + 26 + 28 + 31 + 32 + 35 + 37 + 38 + 41 + 42 + 44 + 47 + 49 + 50 + 52 + 55 + 56 + 59 + 61 + 62 + 64 + 67 + 69 + 70 + 73 + 74 + 76 + 79 + 81 + 82 + 84 + 87 + 88 + 91 + 93 + 94 + 97 + 98 + 100 + 103 + 104 + 107 + 109 + 110 + 112 + 115 + 117 + 118 + 121 + 122 + 124 + 127 + 128.
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, Beyond odious and evil, arXiv preprint arXiv:1405.6214 [math.NT], 2014.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 52.
Cf.
A000069,
A000079,
A000120,
A000773,
A000788,
A001969,
A002042,
A002089,
A007413,
A019568,
A023416,
A027697,
A059015,
A083420,
A010060,
A132679,
A133009.
A261349
T(n,k) is the decimal equivalent of a code for k that maximizes the sum of the Hamming distances between (cyclical) adjacent code words; triangle T(n,k), n>=0, 0<=k<=2^n-1, read by rows.
Original entry on oeis.org
0, 0, 1, 0, 3, 1, 2, 0, 7, 1, 6, 3, 4, 2, 5, 0, 15, 1, 14, 3, 12, 2, 13, 6, 9, 7, 8, 5, 10, 4, 11, 0, 31, 1, 30, 3, 28, 2, 29, 6, 25, 7, 24, 5, 26, 4, 27, 12, 19, 13, 18, 15, 16, 14, 17, 10, 21, 11, 20, 9, 22, 8, 23, 0, 63, 1, 62, 3, 60, 2, 61, 6, 57, 7, 56, 5
Offset: 0
Triangle T(n,k) begins:
0;
0, 1;
0, 3, 1, 2;
0, 7, 1, 6, 3, 4, 2, 5;
0, 15, 1, 14, 3, 12, 2, 13, 6, 9, 7, 8, 5, 10, 4, 11;
0, 31, 1, 30, 3, 28, 2, 29, 6, 25, 7, 24, 5, 26, 4, 27, 12, 19, ... ;
0, 63, 1, 62, 3, 60, 2, 61, 6, 57, 7, 56, 5, 58, 4, 59, 12, 51, ... ;
-
g:= n-> Bits[Xor](n, iquo(n, 2)):
T:= (n, k)-> (t-> `if`(m=0, t, 2^n-1-t))(g(iquo(k, 2, 'm'))):
seq(seq(T(n, k), k=0..2^n-1), n=0..6);
A267941
Decimal representation of the n-th iteration of the "Rule 253" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 3, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
rule=253; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
A269255
a(n) = (2^(2*n+1) - 1)*(3^(n+1) - 1)/2.
Original entry on oeis.org
1, 28, 403, 5080, 61831, 745108, 8952763, 107475760, 1289869711, 15479049388, 185750955523, 2229020652040, 26748283770391, 320979546636868, 3851755118036683, 46221063628493920, 554652772325571871, 6655833302847731548, 79869999773355124243, 958439997835247481400, 11501279976237683562151
Offset: 0
a(1) = 28, because 12^1 = 12 and 12 has 6 divisors (1, 2, 3, 4, 6, 12) -> 1 + 2 + 3 + 4 + 6 + 12 = 28.
-
LinearRecurrence[{20, -115, 240, -144}, {1, 28, 403, 5080}, 21]
Table[(2^(2 n + 1) - 1) ((3^(n + 1) - 1)/2), {n, 0, 20}]
Table[DivisorSigma[1, 12^n], {n, 0, 20}]
-
a(n)=(2^(2*n+1)-1)*(3^(n+1)-1)/2 \\ Charles R Greathouse IV, Jul 26 2016
A280293
a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [-5, 4].
Original entry on oeis.org
3, 1, 6, 7, 18, 31, 66, 127, 258, 511, 1026, 2047, 4098, 8191, 16386, 32767, 65538, 131071, 262146, 524287, 1048578, 2097151, 4194306, 8388607, 16777218, 33554431, 67108866, 134217727, 268435458, 536870911, 1073741826, 2147483647, 4294967298, 8589934591
Offset: 0
-
LinearRecurrence[{2,1,-2},{3,1,6},50] (* Paolo Xausa, Nov 13 2023 *)
-
Vec((3-5*x+x^2) / ((1-x)*(1+x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Dec 31 2016
Comments