cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A108337 Positions of the odd terms in A084202, which gives the coefficients b(n) such that (B(x))^2 has coefficients 1 and 2.

Original entry on oeis.org

0, 1, 3, 5, 6, 13, 15, 16, 18, 25, 26, 28, 30, 31, 63, 65, 66, 68, 75, 76, 80, 82, 83, 85, 86, 87, 88, 90, 92, 96, 97, 99, 100, 101, 107, 108, 110, 113, 114, 115, 117, 118, 120, 121, 122, 130, 131, 132, 136, 137, 139, 141, 143, 144, 145, 147, 149, 150
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2005

Keywords

Comments

Also positions of 1's in A108336, which gives the coefficients of b(n) such that (B(x))^2 has coefficients 1 or 2 mod 4.
Equals A108783(n)/2.

Extensions

Additional comments from Nadia Heninger, Jul 14 2007

A108335 A084202 read mod 4.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 3, 2, 2, 0, 2, 2, 0, 3, 0, 3, 1, 2, 1, 2, 2, 2, 0, 2, 0, 1, 3, 2, 1, 2, 1, 3, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 2, 1, 0, 3, 3, 0, 3, 0, 2, 2, 2, 0, 0, 3, 1, 2, 2, 0, 3, 0, 1, 3, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2005

Keywords

Crossrefs

A083952 Integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, the sequence "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. [That is true - see Theorem 17 of Heninger-Rains-Sloane (2006). - N. J. A. Sloane, Aug 27 2015]
Is this sequence periodic? [It is not periodic for m = 2 or 3. Larger cases remain open. - N. J. A. Sloane, Aug 27 2015]

Crossrefs

Cf. A084202 (A(x)^(1/2)), A108335 (A084202 mod 4), A108336 (A084202 mod 2), A108340 (a(n) mod 2). Positions of 1's: A108783.

Programs

  • Mathematica
    a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Nov 25 2006 *)
    s = 0; a[n_] := a[n] = Block[{}, If[IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], s = s + x^n; 1, s = s + 2 x^n; 2]]; Table[ a@n, {n, 0, 104}] (* Robert G. Wilson v, Sep 08 2007 *)
  • PARI
    A083952_upto(N=99)=vector(N+1, n, if(n>1, (denominator(polcoeff(sqrt(O(x^n)+N+=x^(n-1)),n-1))>1 && N+=x^(n-1))+1, N=1)) \\ M. F. Hasler, Jan 27 2025

Extensions

More terms from N. J. A. Sloane, Jul 02 2005

A084212 G.f. A(x) defined by: A(x)^12 consists entirely of integer coefficients between 1 and 12 (A084067); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -5, 37, -310, 2795, -26352, 256257, -2548875, 25793149, -264579518, 2743935678, -28716005918, 302812817148, -3213908529802, 34301475340630, -367873673112308, 3962187547336323
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) --> r = -0.086930814654238 where A(r)=0.

Crossrefs

A108336 Unique sequence of 1's and 0's such that (Sum_{n >= 0} a(n)*x^n)^2 mod 4 has coefficients which are all 1's and 2's (A083952).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Jul 02 2005

Keywords

Comments

Equals A084202 read mod 2.

Crossrefs

Programs

  • Maple
    S:= 0: SS:= 0:
    for i from 0 to 100 do
      s:= coeff(SS,x,i);
      if s = 0 or s = 3 then
         SS:= SS + 2*expand(S*x^i)+x^(2*i) mod 4; S:= S + x^i;
      fi
    od:
    seq(coeff(S,x,i),i=0..100); # Robert Israel, May 14 2019
  • Mathematica
    max = 98; (* a = A084202 *) a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n-1}]}, If[IntegerQ @ Last @ CoefficientList[Series[Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[a[n], {n, 0, max}]; A108336 = CoefficientList[ Series[Sqrt[Sum[a[i]*x^i, {i, 0, max}]], {x, 0, max}], x] // Mod[#, 2]& (* Jean-François Alcover, Apr 01 2016, after Robert G. Wilson v *)

A084203 G.f. A(x) defined by: A(x)^3 consists entirely of integer coefficients between 1 and 3 (A083953); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, 0, 0, 1, -1, 2, -2, 2, 0, -4, 12, -24, 38, -46, 33, 29, -176, 443, -827, 1222, -1310, 433, 2488, -8814, 19528, -33599, 44928, -37805, -17916, 168049, -463252, 921694, -1446018, 1679053, -808620, -2598482, 10515127, -24690122, 44515322, -62719429, 58496244, 10670109, -213311788, 632128236
Offset: 0

Views

Author

Paul D. Hanna, May 19 2003

Keywords

Comments

Does limit_{n ->infinity} a(n)/a(n+1) exist?

Crossrefs

Programs

  • Mathematica
    kmax = 45;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^3 + O[x]^kmax , x];
    r = {};
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 3, a[k-1], Integers] // ToRules]; coes = coes /. r, {k, 1, kmax}];
    Array[a, kmax, 0] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084204 G.f. A(x) defined by: A(x)^4 consists entirely of integer coefficients between 1 and 4 (A083954); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -1, 3, -7, 20, -58, 177, -554, 1769, -5739, 18866, -62684, 210146, -709882, 2413743, -8253995, 28366316, -97916761, 339326189, -1180068800, 4116957243, -14404398636, 50530280752, -177684095927, 626181400993, -2211215950469, 7823025701314, -27724997048327
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.269562488839799 where A(r)=0.

Crossrefs

Programs

  • Maple
    g:= 1: a[0]:= 1:
    for n from 1 to 50 do
      a[n]:= -floor((coeff(g^4,x,n)-1)/4);
      g:= g + a[n]*x^n;
    od:
    seq(a[n],n=0..50); # Robert Israel, Sep 04 2019
  • Mathematica
    kmax = 30;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^4 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1}; coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 4, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084205 G.f. A(x) defined by: A(x)^5 consists entirely of integer coefficients between 1 and 5 (A083945); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -1, 3, -8, 24, -76, 252, -854, 2950, -10343, 36706, -131570, 475576, -1731357, 6342042, -23356185, 86421603, -321111661, 1197586539, -4481348585, 16819759474, -63302097780, 238835017492, -903165412289, 3422512973645, -12994514592311, 49425252955926
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.2512525316047635 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 30;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^5 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 5, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax+1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084207 G.f. A(x) defined by: A(x)^7 consists entirely of integer coefficients between 1 and 7 (A083947); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -2, 8, -34, 158, -768, 3858, -19851, 104023, -552974, 2973832, -16146688, 88376636, -487034106, 2699839758, -15043262970, 84197804254, -473140314356, 2668221663736, -15095165871964, 85645090974518, -487190919969502
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) -> r = -0.166670835025545 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 25;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^7 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 7, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)

A084211 G.f. A(x) defined by: A(x)^11 consists entirely of integer coefficients between 1 and 11 (A084066); A(x) is the unique power series solution with A(0)=1.

Original entry on oeis.org

1, 1, -4, 26, -189, 1479, -12106, 102224, -883031, 7761209, -69153920, 623018880, -5664270185, 51892998965, -478521450110, 4437418074830, -41350439060725, 386983852716405
Offset: 0

Views

Author

Paul D. Hanna, May 20 2003

Keywords

Comments

Limit a(n)/a(n+1) --> r = -0.100000000011 where A(r)=0.

Crossrefs

Programs

  • Mathematica
    kmax = 20;
    A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
    coes = CoefficientList[A[x]^11 + O[x]^(kmax + 1), x];
    r = {a[0] -> 1, a[1] -> 1};
    coes = coes /. r;
    Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 11, a[k-1], Integers] // ToRules];
    coes = coes /. r, {k, 3, kmax + 1}];
    Table[a[k], {k, 0, kmax}] /. r (* Jean-François Alcover, Jul 26 2018 *)
Showing 1-10 of 16 results. Next