cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A294090 Base-10 complementary numbers: n equals the product of the 10's complement of its digits.

Original entry on oeis.org

5, 18, 35, 50, 180, 315, 350, 500, 1800, 3150, 3500, 5000, 18000, 31500, 35000, 50000, 180000, 315000, 350000, 500000, 1800000, 3150000, 3500000, 5000000, 18000000, 31500000, 35000000, 50000000, 180000000, 315000000, 350000000, 500000000, 1800000000
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2018

Keywords

Comments

The only primitive terms of the sequence, i.e., not equal to 10 times a smaller term, are 5, 18, 35 and 315.
For base 2, 3, 4 and 5, the corresponding sequences are less interesting: b = 2 yields powers of 2, A000079; b = 3 yields 4 times powers of 3, A003946 \ {1}; b = 4 yields {2, 6}*{4^k, k>=0} = A122756 = 2*A084221; b = 5 yields 8*{5^k, k>=0} = A128625 \ {1}.
See A298976 for base-6 complementary numbers. Base 7 yields {12, 120}*{7^k, k>=0}, cf. A298977. The linked web page (in French) gives also examples for base-100 complementary numbers, e.g., 198 = (100 - 1)*(100 - 98), 1680 = (100 - 16)*(100 - 80), ..., and for base-1000 complementary numbers.

Examples

			5 = (10-5), therefore 5 is in the sequence.
18 = (10-1)*(10-8), therefore 18 is in the sequence.
35 = (10-3)*(10-5), therefore 35 is in the sequence.
315 = (10-3)*(10-1)*(10-5), therefore 315 is in the sequence.
If x is in the sequence, then 10*x = concat(x,0) = x*(10-0) is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,10},{5,18,35,50,180,315},40] (* Harvey P. Dale, Mar 02 2024 *)
  • PARI
    is(n,b=10)={n==prod(i=1,#n=digits(n,b),b-n[i])}
    
  • PARI
    a(n)=if(n>6,a((n-3)%4+3)*10^((n-3)\4),[5,18,35,50,180,315][n])
    
  • PARI
    Vec(x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

a(n+4) = 10 a(n) for all n >= 3.
G.f.: x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4). - Colin Barker, Feb 09 2018

A087440 Expansion of (1-2x-3x^2)/((1-2x)(1-4x)).

Original entry on oeis.org

1, 4, 13, 46, 172, 664, 2608, 10336, 41152, 164224, 656128, 2622976, 10488832, 41949184, 167784448, 671113216, 2684403712, 10737516544, 42949869568, 171799085056, 687195553792, 2748780642304, 10995119423488, 43980471402496
Offset: 0

Views

Author

Paul Barry, Sep 03 2003

Keywords

Comments

Binomial transform is A087439. Second binomial transform of A084221 (with extra leading 1).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2x-3x^2)/((1-2x)(1-4x)),{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{6,-8},{4,13},30]] (* Harvey P. Dale, Jan 18 2012 *)

Formula

a(n) = 5*4^n/8 + 3*2^n/4 - 3*0^n/8.
a(n) = 6*a(n-1) - 8*a(n-2), n>2. - Harvey P. Dale, Jan 18 2012
a(n) = A000217(2^n) + floor(A000217(2^(n-1))). - J. M. Bergot, May 03 2018

A133087 A133080 * A007318.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 2, 5, 4, 1, 1, 4, 6, 4, 1, 2, 9, 16, 14, 6, 1, 1, 6, 15, 20, 15, 6, 1, 2, 13, 36, 55, 50, 27, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Row sums = A084221: (1, 3, 4, 12, 16, 48, 64, 192, ...).
Subtriangle of (0, 2, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First few rows of the triangle:
  1;
  2,  1;
  1,  2,  1;
  2,  5,  4,  1;
  1,  4,  6,  4,  1;
  2,  9, 16, 14,  6,  1;
  1,  6, 15, 20, 15,  6,  1;
  2, 13, 36, 55, 50, 27,  8,  1;
  1,  8, 28, 56, 70, 56, 28,  8,  1;
  ...
Triangle (0, 2, -3/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  2,  1;
  0,  1,  2,  1;
  0,  2,  5,  4,  1;
  0,  1,  4,  6,  4,  1;
  0,  2,  9, 16, 14,  6,  1;
  0,  1,  6, 15, 20, 15,  6,  1;
  0,  2, 13, 36, 55, 50, 27,  8,  1;
  0,  1,  8, 28, 56, 70, 56, 28,  8,  1;
  ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(1 + 2*x + y*x)/(1 - (1 + y)^2*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 21 2017 *)

Formula

A133080 * A007318 as infinite lower triangular matrices.
G.f.: (1+2*x+y*x)/(1-(1+y)^2*x^2). - Philippe Deléham, Mar 03 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 1. - Philippe Deléham, Mar 03 2012
Sum_{k=0..n} T(n,k)*x^k = A059841(n), A019590(n+1), A000034(n), A084221(n), A133125(n) for x = -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Mar 03 2012

A181650 Inverse of number triangle A070909.

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

Generalized (conditional) Riordan array with k-th column generated by x^k*(1-x-x^2) if k is even, x^k otherwise.
Triangle T(n,k), read by rows, given by (-1,2,-1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (1,0,-1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011
Double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)) as defined in Davenport et al. - Peter Bala, Aug 15 2021

Examples

			Triangle begins
   1,
  -1,  1,
  -1,  0,  1,
   0,  0, -1,  1,
   0,  0, -1,  0,  1,
   0,  0,  0,  0, -1,  1,
   0,  0,  0,  0, -1,  0,  1,
   0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0,  0,  0, -1,  0,  1,
   0,  0,  0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1
Production matrix begins
  -1,  1,
  -2,  1,  1,
  -1,  1, -1,  1,
  -1,  1, -2,  1,  1,
  -1,  1, -1,  1, -1,  1,
  -1,  1, -1,  1, -2,  1,  1,
  -1,  1, -1,  1, -1,  1, -1,  1,
  -1,  1, -1,  1, -1,  1, -2,  1,  1,
  -1,  1, -1,  1, -1,  1, -1,  1, -1,  1
		

Crossrefs

Formula

G.f.: (1+(y-1)*x-x^2)/((1-y*x)*(1+y*x)). - Philippe Deléham, Nov 19 2011

A137447 a(n) = 4*a(n-4) for n>3, a(0)=-1, a(1)=-4, a(2)=2, a(3)=12.

Original entry on oeis.org

-1, -4, 2, 12, -4, -16, 8, 48, -16, -64, 32, 192, -64, -256, 128, 768, -256, -1024, 512, 3072, -1024, -4096, 2048, 12288, -4096, -16384, 8192, 49152, -16384, -65536, 32768, 196608, -65536, -262144, 131072, 786432, -262144, -1048576, 524288, 3145728, -1048576
Offset: 0

Views

Author

Paul Curtz, Apr 18 2008

Keywords

Crossrefs

Programs

  • Magma
    &cat[[-(-2)^n,2^n-5*(-2)^n]: n in [0..20]];  // Bruno Berselli, Nov 02 2011
    
  • Mathematica
    LinearRecurrence[{0,0,0,4},{-1,-4,2,12},50] (* or *) CoefficientList[ Series[(1+4x-2x^2-12x^3)/(4x^4-1),{x,0,50}],x] (* Harvey P. Dale, Jun 27 2011 *)
  • SageMath
    def A137447(n): return 2^(n//2)*(-1)^(n//2+1) if n%2==0 else 2^((n-1)//2)*(1 - 5*(-1)^((n-1)//2))
    [A137447(n) for n in range(51)] # G. C. Greubel, Sep 15 2023

Formula

G.f.: (1+4*x-2*x^2-12*x^3)/(4*x^4-1). - Harvey P. Dale, Jun 27 2011
From Bruno Berselli, Nov 02 2011: (Start)
a(n) = (1-(-1)^n-2*(3-2*(-1)^n)*(-1)^floor(n/2))*2^(floor(n/2)-1).
a(2n) = -A122803(n).
a(2n+1) = (-1)^(n+1)*A084221(n+2). (End)
E.g.f.: (1/sqrt(2))*( sinh(sqrt(2)*x) - 5*sin(sqrt(2)*x) - sqrt(2)*cos(sqrt(2)*x) ). - G. C. Greubel, Sep 15 2023

Extensions

More terms from Harvey P. Dale, Jun 27 2011

A240525 a(n) = 2^(n-2)*(2^(n+4)-(-1)^n+5).

Original entry on oeis.org

5, 19, 68, 268, 1040, 4144, 16448, 65728, 262400, 1049344, 4195328, 16780288, 67112960, 268447744, 1073758208, 4295016448, 17179934720, 68719673344, 274878169088, 1099512414208, 4398047559680, 17592189190144, 70368748371968, 281474989293568, 1125899923619840
Offset: 0

Views

Author

Vincenzo Librandi, Apr 07 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^(n-2)*(2^(n+4)-(-1)^n+5): n in [0..25]];
    
  • Magma
    I:=[5,19,68]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2)-16*Self(n-3): n in [1..30]];
    
  • Mathematica
    CoefficientList[Series[(5 - x - 28 x^2)/(1 - 4 x - 4 x^2 + 16 x^3), {x, 0, 33}], x]
  • PARI
    a(n)=(2^(n+4)-(-1)^n+5)<<(n-2) \\ Charles R Greathouse IV, Aug 26 2014

Formula

G.f.: (5-x-28*x^2)/(1-4*x-4*x^2+16*x^3).
a(n) = 4*a(n-1) + 4*a(n-2)- 16*a(n-3) with n>2, a(0)=5, a(1)=19, a(2)=68.
a(n) = (5*2^n-(-2)^n)/4+4^(n+1) = A084221(n)+A000302(n+1).
Previous Showing 11-16 of 16 results.