cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A085309 Initial values providing nontrivial cyclic attractor when function defined in A085307 is iterated.

Original entry on oeis.org

213, 323, 639, 713
Offset: 1

Views

Author

Labos Elemer, Jun 27 2003

Keywords

Examples

			n=213 gives {213,713,3123,3473,15123,713},
n=323 gives {323,1917,713,3123,3473,15123,713},
n=639 gives {639,713,3123,3473,15123,713}.
		

Crossrefs

Formula

Algorithm: 1# factorize n; 2# arrange prime-factors by decreasing size; 3# concatenate prime factors and interpret the result as decimal number.Iterate 1#, 2#, 3#.

A192138 Palindromic concatenation of prime divisors of numbers from A192137.

Original entry on oeis.org

2, 3, 2, 5, 7, 2, 3, 11, 2, 5, 3, 2, 313, 7, 2, 323, 3, 101, 313, 717, 11, 5, 2, 343, 131, 151, 353, 181, 191, 323, 373, 3, 383, 2, 737, 313, 747, 3113, 7, 313, 353, 373, 383, 343, 1331, 31113, 767, 353, 313, 2, 323, 5, 373, 3223, 797, 727, 3, 383, 757, 787, 3553
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Examples

			a(13) = 313 because A192137(13) = 39 = 3 * 13.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Flatten[IntegerDigits /@ FactorInteger[n][[;; , 1]]]]; Select[f /@ Range[2, 1900], PalindromeQ] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A192140 Palindromic numbers m such that their concatenation of prime divisors are also palindromic numbers.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 101, 121, 131, 151, 181, 191, 313, 343, 353, 373, 383, 727, 747, 757, 787, 797, 919, 929, 1331, 10001, 10201, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14641, 14741, 15451, 15551, 16061, 16361
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Comments

The corresponding values of palindromic concatenation in A192141.
Superset of A002385 (palindromic primes) and A084092 (prime power decimal palindromes).
Subset of A002113 (palindromic numbers) and A192137.

Examples

			Concatenation of prime divisors of number 747 = 3^2 * 83 is 383 (palindromic number).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Flatten[IntegerDigits /@ FactorInteger[n][[;; , 1]]]]; Select[Range[2, 20000], And @@ (PalindromeQ /@ {#, f[#]}) &] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A192141 Palindromic concatenation of prime divisors of numbers from A192140.

Original entry on oeis.org

2, 3, 2, 5, 7, 2, 3, 11, 101, 11, 131, 151, 181, 191, 313, 7, 353, 373, 383, 727, 383, 757, 787, 797, 919, 929, 11, 73137, 101, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 11, 14741, 15451, 15551, 16061, 16361, 16561, 16661
Offset: 1

Views

Author

Jaroslav Krizek, Jun 24 2011

Keywords

Examples

			a(21) = 383 because A192140(21) = 747 = 3 * 83.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Flatten[IntegerDigits /@ FactorInteger[n][[;; , 1]]]]; f /@ Select[Range[2, 20000], And @@ (PalindromeQ /@ {#, f[#]}) &] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A251360 Numbers k such that k is the concatenation of prime factors of pi(k), in increasing order.

Original entry on oeis.org

1117, 2163, 2537, 5137, 222926801
Offset: 1

Views

Author

Jahangeer Kholdi, Dec 01 2014

Keywords

Comments

Numbers k such that k = A037276(A000720(k)).
Conjecture: numbers k such that k = A084317(A000720(k)). - Chai Wah Wu, Apr 04 2018
a(6) > 10^12 if exists. - Max Alekseyev, May 16 2025

Examples

			1117 is in the sequence since pi(1117) = 11*17,
2163 is in the sequence since pi(2163) = 2*163,
2537 is in the sequence since pi(2537) = 2*5*37,
and 5137 is in the sequence since pi(5137) = 5*137.
		

Crossrefs

Programs

  • Mathematica
    a251360[n_Integer] := Select[Range[n], # == FromDigits[Flatten@IntegerDigits[First@ Transpose@ FactorInteger[PrimePi[#]]]] &]; a251360[10^5] (* Michael De Vlieger, Dec 03 2014 *)
  • Python
    from sympy import prime, factorint
    A251360_list, p = [], 3
    for n in range(2,10**6):
        q, fn = prime(n+1), factorint(n)
        m = int(''.join(str(d)*fn[d] for d in sorted(fn)))
        if p <= m < q:
            A251360_list.append(m)
        p = q # Chai Wah Wu, Dec 10 2014, corrected Apr 04 2018

Extensions

a(5) from Chai Wah Wu, Dec 10 2014

A251361 Numbers k such that pi(k) is the concatenation of distinct prime factors of k, in increasing order.

Original entry on oeis.org

4, 100, 31509, 7560625
Offset: 1

Views

Author

Jahangeer Kholdi, Dec 02 2014

Keywords

Comments

Next term must be greater than 4*10^8.
Numbers k such that A000720(k) = A084317(k). - Michel Marcus, Dec 06 2014

Examples

			4 is in the sequence since 4=2^2 and pi(4)=2,
100 is in the sequence since 100=2^2*5^2 and pi(100)=25,
31509 is in the sequence since 31509=3^4*389 and pi(31509)=3389, and
7560625 is in the sequence since 7560625=5^4*12097 and pi(7560625)=512097.
		

Crossrefs

Programs

  • Mathematica
    a251361[n_Integer] := Select[Range[n], PrimePi[#] == FromDigits[
    Flatten@ IntegerDigits[First@ Transpose@ FactorInteger[#]]] &]; a251361[10^6] (* Michael De Vlieger, Dec 03 2014 *)
  • PARI
    is(n)=eval(fold((x,y)->Str(x,y),factor(n)[,1]))==primepi(n) \\ Charles R Greathouse IV, Dec 06 2014

Extensions

Definition corrected by Max Alekseyev, Feb 12 2025

A209799 Composite numbers n such that the concatenation of the digits of the prime divisors of n is a prime number.

Original entry on oeis.org

4, 6, 8, 9, 12, 16, 18, 21, 22, 24, 25, 27, 32, 33, 36, 39, 44, 46, 48, 49, 51, 54, 58, 63, 64, 66, 70, 72, 81, 82, 88, 92, 93, 96, 99, 108, 111, 115, 116, 117, 121, 125, 128, 132, 133, 140, 141, 142, 144, 147, 153, 154, 159, 162, 164, 165, 166, 169, 176, 177
Offset: 1

Views

Author

Michel Lagneau, Mar 13 2012

Keywords

Examples

			70 is in the sequence because the prime divisors of 70 are {2,5,7} and 257 is prime.
		

Crossrefs

Programs

  • Maple
    read("transforms") ;
    isA209799 := proc(n)
        local pdivs ;
        if isprime(n) or n < 4 then
            return false;
        end if;
        pdivs := sort(convert(numtheory[factorset](n),list)) ;
        isprime(digcatL(pdivs)) ;
    end proc:
    for n from 4 to 200 do
            if isA209799(n) then printf("%d,",n) ;
            end if;
    end do: # R. J. Mathar, Mar 19 2012
  • Mathematica
    Select[Range[200],CompositeQ[#]&&PrimeQ[FromDigits[Flatten[ IntegerDigits/@ FactorInteger[#] [[;;,1]]]]]&] (* Harvey P. Dale, Apr 10 2023 *)

A251362 Numbers n such that n is the concatenation of distinct prime factors of phi(n), in increasing order.

Original entry on oeis.org

25, 235741, 23517131, 274873357929, 2357131984859
Offset: 1

Views

Author

Jahangeer Kholdi, Dec 03 2014

Keywords

Comments

Numbers n such that n = A084317(A000010(n)). - Michel Marcus, Dec 06 2014

Examples

			25 is in the sequence since phi(25)=2^2*5,
235741 is in the sequence since phi(235741)=2^4*3^2*5*7*41,
23517131 is in the sequence since phi(23517131)=2^7*3*5^2*17*131.
		

Crossrefs

Programs

  • Mathematica
    a251362[n_Integer] := Rest@ Select[Range[n], # ==
    FromDigits[Flatten@IntegerDigits[First@Transpose@FactorInteger[EulerPhi[#]]]] &]; a251362[10^6] (* Michael De Vlieger, Dec 03 2014 *)

Extensions

a(4)-a(5) from Max Alekseyev, Feb 11 2025

A329025 If n = Product (p_j^k_j) then a(n) = concatenation (pi(p_j)), where pi = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 12, 4, 1, 2, 13, 5, 12, 6, 14, 23, 1, 7, 12, 8, 13, 24, 15, 9, 12, 3, 16, 2, 14, 10, 123, 11, 1, 25, 17, 34, 12, 12, 18, 26, 13, 13, 124, 14, 15, 23, 19, 15, 12, 4, 13, 27, 16, 16, 12, 35, 14, 28, 110, 17, 123, 18, 111, 24, 1, 36, 125, 19, 17, 29, 134
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2019

Keywords

Comments

Concatenate of indices of distinct prime factors of n, in increasing order.

Examples

			a(60) = a(2^2 * 3 * 5) = a(prime(1)^2 * prime(2) * prime(3)) = 123.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[Flatten@IntegerDigits@(PrimePi[#[[1]]] & /@ FactorInteger[n])]; Table[a[n], {n, 1, 70}]

Formula

a(prime(n)^k) = n for k > 0.

A084322 Fixed points if prime-factor-concatenation function (A084318) is iterated at primorial number initial values.

Original entry on oeis.org

2, 23, 547, 2357, 4359293547691, 325798243129564339, 3947306373286437248759663633906484193454376823
Offset: 1

Views

Author

Labos Elemer, Jun 20 2003

Keywords

Examples

			n=4: primorial[4]=2310; a(4)=4359293547691=A084318[2310]; the list of iterations:
{2310, 235711, 7151223, 34495309, 41841349, 1116722777, 1958774883, 313113444469, 744730492067, 4359293547691};
at each step the ordered prime factors of previous term are concatenated.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]] lf[x_] := Length[FactorInteger[x]] nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] coc[x_] := Fold[nd, 0, Flatten[IntegerDigits[ba[x]], 1]] Table[FixedPoint[coc, q[w]], {w, 1, 7}]

Formula

a(n)=A084318[A002110(n)]
Previous Showing 11-20 of 23 results. Next