cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A084943 Decagorials: n-th polygorial for k=10.

Original entry on oeis.org

1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
  • PARI
    a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*Gamma(n+1/4)*sqrt(2)*Gamma(3/4)/Pi.
a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017
D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022
a(n) ~ 2^(2*n+1) * n^(2*n + 1/4) * Pi /(Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 28 2025

A085356 a(n) = polygorial(n,3)/polygorial(3,n), n >= 3.

Original entry on oeis.org

1, 5, 45, 630, 12600, 340200, 11907000, 523908000, 28291032000, 1838917080000, 141596615160000, 12743695364400000, 1325344317897600000, 157715973829814400000, 21291656467024944000000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->(n+1)!^2*(n+2)*(n+3)*(n+4)/2^n/24; [seq(a(j),j=0..15)];
    seq(mul(binomial(k,2)-binomial(k,1), k =5..n), n=4..18 ); # Zerinvary Lajos, Aug 07 2007
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[3, #]/polygorial[#, 3] &, 17, 3] (* Robert G. Wilson v, Dec 13 2016 *)

Formula

a(n) = polygorial(n+3, 3)/polygorial(3, n+3) = (n+1)!^2*(n+2)*(n+3)*(n+4)/(2^n*24) = A067550(n+2)/2.
a(n) ~ (1/12)*Pi*n^(2*n+6)/(2^n*exp(2*n)). - Ilya Gutkovskiy, Dec 17 2016
D-finite with recurrence 2*a(n) = (n+4)*(n+1)*a(n-1). - R. J. Mathar, Mar 12 2019

A210277 a(n) = (3*n)!/3^n.

Original entry on oeis.org

1, 2, 80, 13440, 5913600, 5381376000, 8782405632000, 23361198981120000, 94566133475573760000, 553211880832106496000000, 4492080472356704747520000000, 49017582114356362204938240000000, 699971072593008852286518067200000000
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 20 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^3/3).
a(n) = Product_{i=1..n} (2*binomial(3i,3)). - James Mahoney, Apr 04 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = exp(3^(1/3))/3 + (2/3)*exp(-3^(1/3)/2)*cos(3^(5/6)/2).
Sum_{n>=0} (-1)^n/a(n) = exp(-3^(1/3))/3 + (2/3)*exp(3^(1/3)/2)*cos(3^(5/6)/2). (End)

A210278 (5n)!/5^n.

Original entry on oeis.org

1, 24, 145152, 10461394944, 3892643213082624, 4963587213865915514880, 16976183027980227752723742720, 132264293969742655099733137120296960, 2088743125114618199924764850166056689336320, 61246577083125859615725138685776750112964471685120
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 20 2012

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(5*n)/5^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(5 n)!/5^n, {n, 0, 10}] (* Vincenzo Librandi, Feb 15 2013 *)
    With[{nn=100},Take[CoefficientList[Series[1/(1-x^5/5),{x,0,nn}],x] Range[0,nn]!,{1,-1,5}]] (* Harvey P. Dale, May 27 2025 *)

Formula

E.g.f.: 1/(1-x^5/5).

A210279 (6n)!/6^n.

Original entry on oeis.org

1, 120, 13305600, 29640619008000, 478741050720092160000, 34111736086958726676480000000, 7973107998754741458076119859200000000, 5019026197962676820927435579005599744000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n)/6^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(6 n)!/6^n, {n, 0, 11}] (* Vincenzo Librandi, Feb 15 2013 *)
    With[{nn=50},Take[CoefficientList[Series[1/(1-x^6/6),{x,0,nn}],x] Range[0,nn-2]!,{1,-1,6}]] (* Harvey P. Dale, Sep 25 2023 *)

Formula

E.g.f.: 1/(1-x^6/6).

A133401 Diagonal of polygorial array T(n,k) = n-th polygorial for k = n, for n > 2.

Original entry on oeis.org

18, 576, 46200, 7484400, 2137544640, 981562982400, 678245967907200, 670873729125600000, 913601739437346960000, 1660189302321994373529600, 3923769742187622047360640000, 11805614186177306251101945600000, 44403795869109177300313209696000000
Offset: 3

Views

Author

Jonathan Vos Post, Nov 25 2007

Keywords

Comments

Array T(n,k) = k-th polygorial(n,k) begins:
k | polygorial(n,k)
3 | 1 1 3 18 180 2700 56700 1587600 57153600
4 | 1 1 4 36 576 14400 518400 25401600 1625702400
5 | 1 1 5 60 1320 46200 2356200 164934000 15173928000
6 | 1 1 6 90 2520 113400 7484400 681080400 81729648000
7 | 1 1 7 126 4284 235620 19085220 2137544640 316356606720
8 | 1 1 8 168 6720 436800 41932800 5577062400 981562982400
9 | 1 1 9 216 9936 745200 82717200 12738448800 2598643555200
10 | 1 1 10 270 14040 1193400 150368400 26314470000 6104957040000

Examples

			a(3) = polygorial(3,3) = A006472(3) = product of the first 3 triangular numbers = 1*3*6 = 18.
a(4) = polygorial(4,4) = A001044(4) = product of the first 4 squares = 1*4*9*16 = 576.
a(5) = polygorial(5,5) = A084939(5) = product of the first 5 pentagonal numbers = 1*5*12*22*35 = 46200.
		

Crossrefs

Programs

  • Maple
    A133401 := proc(n) return mul((n/2-1)*m^2-(n/2-2)*m,m=1..n): end: seq(A133401(n),n=3..15); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Table[Product[m*(4 - n + m*(n-2))/2, {m, 1, n}],{n, 3, 20}] (* Vaclav Kotesovec, Feb 20 2015 *)
    Table[FullSimplify[(n-2)^n * Gamma[n+1] * Gamma[n+2/(n-2)] / (2^n*Gamma[2/(n-2)])],{n,3,15}] (* Vaclav Kotesovec, Feb 20 2015 *)
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[ polygorial[#, #] &, 13, 3] (* Robert G. Wilson v, Dec 13 2016 *)

Formula

a(n) ~ Pi * n^(3*n-1) / (2^(n-2) * exp(2*n+2)). - Vaclav Kotesovec, Feb 20 2015

Extensions

Edited by Nathaniel Johnston, May 05 2011

A210280 (7n)!/7^n.

Original entry on oeis.org

1, 720, 1779148800, 148953184174080000, 126983900296423931904000000, 614812159599342234168301977600000000, 11942354952042770431904585727413846016000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^7/7).

A210281 (8n)!/8^n.

Original entry on oeis.org

1, 5040, 326918592000, 1211813284635233280000, 64240926985765022013480960000000, 24899758399899222849902687670779904000000000, 47355329866546908076714664639943599847875543040000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^8/8).

A276482 a(n) = 5^n*Gamma(n+1/5)*Gamma(n+1)/Gamma(1/5).

Original entry on oeis.org

1, 1, 12, 396, 25344, 2661120, 415134720, 90084234240, 25944259461120, 9573431741153280, 4403778600930508800, 2470519795122015436800, 1660189302321994373529600, 1316530116741341538208972800, 1216473827868999581305090867200, 1295544626680484554089921773568000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Comments

12-gonal (or dodecagonal) factorial numbers, also polygorial(n, 12).
More generally, the m-gonal factorial numbers (or polygorial(n, m)) is 2^(-n)*(m - 2)^n*Gamma(n+2/(m-2))*Gamma(n+1)/Gamma(2/(m-2)), m>2.

Crossrefs

Cf. similar sequences of m-gonal factorial numbers (or polygorial(n, m)): A006472 (m=3), A001044 (m=4), A084939 (m=5), A000680 (m=6), A084940 (m=7), A084941 (m=8), A084942 (m=9), A084943 (m=10), A084944 (m=11).

Programs

  • Maple
    seq(mul(k*(5*k-4),k=1..n), n=0..20); # Robert Israel, Sep 18 2016
  • Mathematica
    FullSimplify[Table[5^n Gamma[n + 1/5] (Gamma[n + 1]/Gamma[1/5]), {n, 0, 15}]]
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2),n]]; Array[polygorial[12, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
  • PARI
    a(n) = prod(k=1, n, k*(5*k - 4)); \\ Michel Marcus, Sep 06 2016

Formula

a(n) = Product_{k=1..n} k*(5*k - 4), a(0)=1.
a(n) = Product_{k=1..n} A051624(k), a(0)=1.
a(n) = A000142(n)*A008548(n).
a(n) ~ 2*Pi*5^n*n^(2*n+1/5)/(Gamma(1/5)*exp(2*n)).
Sum_{n>=0} 1/a(n) = BesselI(-4/5,2/sqrt(5))*Gamma(1/5)/5^(2/5) = Hypergeometric0F1(1/5, 1/5) = 2.085898421130914...

A279663 a(n) = (5/6)^n*Gamma(n+3/5)*Gamma(n+1)*Gamma(n+2)/Gamma(3/5).

Original entry on oeis.org

1, 1, 8, 208, 12480, 1435200, 281299200, 86640153600, 39507910041600, 25482601976832000, 22424689739612160000, 26147188236387778560000, 39429959860472770068480000, 75350653293363463600865280000, 179334554838205043370059366400000, 523656900127558726640573349888000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 16 2016

Keywords

Comments

Heptagonal pyramidal factorial numbers.

Crossrefs

Cf. A002413.
Cf. A084940 (heptagonal factorial numbers).
Cf. A087047 (tetrahedral factorial numbers), A135438 (square pyramidal factorial numbers), A167484 (pentagonal pyramidal factorial numbers), A279662 (hexagonal pyramidal factorial numbers).

Programs

  • Magma
    [Round((5/6)^n*Gamma(n+3/5)*Gamma(n+1)*Gamma(n+2)/Gamma(3/5)): n in [0..20]]; // Vincenzo Librandi Dec 17 2016
  • Mathematica
    FullSimplify[Table[(5/6)^n Gamma[n + 3/5] Gamma[n + 1] Gamma[n + 2]/Gamma[3/5], {n, 0, 15}]]

Formula

a(n) = Product_{k=1..n} k*(k + 1)*(5*k - 2)/6, a(0)=1.
a(n) = Product_{k=1..n} A002413(k), a(0)=1.
a(n) ~ (2*Pi)^(3/2)*(5/6)^n*n^(3*n+21/10)/(Gamma(3/5)*exp(3*n)).
Previous Showing 11-20 of 20 results.