A084943
Decagorials: n-th polygorial for k=10.
Original entry on oeis.org
1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016
A085356
a(n) = polygorial(n,3)/polygorial(3,n), n >= 3.
Original entry on oeis.org
1, 5, 45, 630, 12600, 340200, 11907000, 523908000, 28291032000, 1838917080000, 141596615160000, 12743695364400000, 1325344317897600000, 157715973829814400000, 21291656467024944000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->(n+1)!^2*(n+2)*(n+3)*(n+4)/2^n/24; [seq(a(j),j=0..15)];
seq(mul(binomial(k,2)-binomial(k,1), k =5..n), n=4..18 ); # Zerinvary Lajos, Aug 07 2007
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[3, #]/polygorial[#, 3] &, 17, 3] (* Robert G. Wilson v, Dec 13 2016 *)
A210277
a(n) = (3*n)!/3^n.
Original entry on oeis.org
1, 2, 80, 13440, 5913600, 5381376000, 8782405632000, 23361198981120000, 94566133475573760000, 553211880832106496000000, 4492080472356704747520000000, 49017582114356362204938240000000, 699971072593008852286518067200000000
Offset: 0
Cf.
A210278,
A000680,
A067630,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A087127,
A001147,
A132101.
Original entry on oeis.org
1, 24, 145152, 10461394944, 3892643213082624, 4963587213865915514880, 16976183027980227752723742720, 132264293969742655099733137120296960, 2088743125114618199924764850166056689336320, 61246577083125859615725138685776750112964471685120
Offset: 0
Cf.
A210277,
A000680,
A067630,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A087127,
A001147,
A132101.
-
[Factorial(5*n)/5^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
-
Table[(5 n)!/5^n, {n, 0, 10}] (* Vincenzo Librandi, Feb 15 2013 *)
With[{nn=100},Take[CoefficientList[Series[1/(1-x^5/5),{x,0,nn}],x] Range[0,nn]!,{1,-1,5}]] (* Harvey P. Dale, May 27 2025 *)
Original entry on oeis.org
1, 120, 13305600, 29640619008000, 478741050720092160000, 34111736086958726676480000000, 7973107998754741458076119859200000000, 5019026197962676820927435579005599744000000000
Offset: 0
Cf.
A210278,
A210277,
A000680,
A067630,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A087127,
A001147,
A132101
-
[Factorial(6*n)/6^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
-
Table[(6 n)!/6^n, {n, 0, 11}] (* Vincenzo Librandi, Feb 15 2013 *)
With[{nn=50},Take[CoefficientList[Series[1/(1-x^6/6),{x,0,nn}],x] Range[0,nn-2]!,{1,-1,6}]] (* Harvey P. Dale, Sep 25 2023 *)
A133401
Diagonal of polygorial array T(n,k) = n-th polygorial for k = n, for n > 2.
Original entry on oeis.org
18, 576, 46200, 7484400, 2137544640, 981562982400, 678245967907200, 670873729125600000, 913601739437346960000, 1660189302321994373529600, 3923769742187622047360640000, 11805614186177306251101945600000, 44403795869109177300313209696000000
Offset: 3
a(3) = polygorial(3,3) = A006472(3) = product of the first 3 triangular numbers = 1*3*6 = 18.
a(4) = polygorial(4,4) = A001044(4) = product of the first 4 squares = 1*4*9*16 = 576.
a(5) = polygorial(5,5) = A084939(5) = product of the first 5 pentagonal numbers = 1*5*12*22*35 = 46200.
-
A133401 := proc(n) return mul((n/2-1)*m^2-(n/2-2)*m,m=1..n): end: seq(A133401(n),n=3..15); # Nathaniel Johnston, May 05 2011
-
Table[Product[m*(4 - n + m*(n-2))/2, {m, 1, n}],{n, 3, 20}] (* Vaclav Kotesovec, Feb 20 2015 *)
Table[FullSimplify[(n-2)^n * Gamma[n+1] * Gamma[n+2/(n-2)] / (2^n*Gamma[2/(n-2)])],{n,3,15}] (* Vaclav Kotesovec, Feb 20 2015 *)
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[ polygorial[#, #] &, 13, 3] (* Robert G. Wilson v, Dec 13 2016 *)
Original entry on oeis.org
1, 720, 1779148800, 148953184174080000, 126983900296423931904000000, 614812159599342234168301977600000000, 11942354952042770431904585727413846016000000000
Offset: 0
Cf.
A210279,
A210278,
A210277,
A000680,
A067630,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A087127,
A001147,
A132101
Original entry on oeis.org
1, 5040, 326918592000, 1211813284635233280000, 64240926985765022013480960000000, 24899758399899222849902687670779904000000000, 47355329866546908076714664639943599847875543040000000000
Offset: 0
Cf.
A210280,
A210279,
A210278,
A210277,
A000680,
A067630,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A087127,
A001147,
A132101
A276482
a(n) = 5^n*Gamma(n+1/5)*Gamma(n+1)/Gamma(1/5).
Original entry on oeis.org
1, 1, 12, 396, 25344, 2661120, 415134720, 90084234240, 25944259461120, 9573431741153280, 4403778600930508800, 2470519795122015436800, 1660189302321994373529600, 1316530116741341538208972800, 1216473827868999581305090867200, 1295544626680484554089921773568000
Offset: 0
-
seq(mul(k*(5*k-4),k=1..n), n=0..20); # Robert Israel, Sep 18 2016
-
FullSimplify[Table[5^n Gamma[n + 1/5] (Gamma[n + 1]/Gamma[1/5]), {n, 0, 15}]]
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2),n]]; Array[polygorial[12, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
-
a(n) = prod(k=1, n, k*(5*k - 4)); \\ Michel Marcus, Sep 06 2016
Comments