cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).

Original entry on oeis.org

1, 1, 4, 6, 4, 1, 1, 24, 176, 624, 1251, 1500, 1070, 420, 70, 1, 124, 3126, 33124, 191251, 681000, 1596120, 2543520, 2780820, 2058000, 987000, 277200, 34650, 1, 624, 49376, 1350624, 18308751, 146500500, 763418870, 2749648020, 7101675070, 13440210000
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+4,4)^p of degree 4*p in terms of falling factorials: C(x+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
  n = 0 | 1
  n = 1 | 1   4    6     4      1
  n = 2 | 1  24  176   624   1251   1500    1070  420  70
  n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
  ...
Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 =  C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+5, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+4, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+4,4)^n. Equivalently, let v_n denote the sequence (1, 5^n, 15^n, 35^n, ...) regarded as an infinite column vector, where 1, 5, 15, 35, ... is the sequence binomial(n+4,4) - see A000332. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = C(k+4,4)*T(n,k) + 4*C(k+3,4)*T(n,k-1) + 6*C(k+2,4)*T(n,k-2) + 4*C(k+1,4)*T(n,k-3) + C(k,4)*T(n,k-4) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 4*n.
n-th row polynomial R(n,x) = (1 + x)^4 o (1 + x)^4 o ... o (1 + x)^4 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n,x) = Sum_{i >= 0} binomial(i+4,4)^n*x^i/(1 + x)^(i+1).
R(n+1,x) = 1/4! * (1 + x)^4 * (d/dx)^4(x^4*R(n,x)).
(1 - x)^(4*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A236463. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087109 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,5). The p-th row (p>=1) contains a(i,p) for i=1 to 5*p-4, where a(i,p) satisfies Sum_{i=1..n} C(i+4,5)^p = 6 * C(n+5,6) * Sum_{i=1..5*p-4} a(i,p) * C(n-1,i-1)/(i+5).

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 1, 1, 35, 370, 1920, 5835, 11253, 14240, 11830, 6230, 1890, 252, 1, 215, 8830, 148480, 1352615, 7665757, 29224020, 78518790, 152794740, 218270220, 229279512, 175227360, 94864770, 34504470, 7567560, 756756, 1, 1295, 191890
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+5,5)^p of degree 5*p in terms of falling factorials: C(x+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,35,370,...,252, so Sum_{i=1..n} C(i+4,5)^3 = 6 * C(n+5,6) * [ a(1,3)/6 + a(2,3)*C(n-1,1)/7 + a(3,3)*C(n-1,2)/8 + ... + a(11,3)*C(n-1,10)/16 ] = 6 * C(n+5,6) * [ 1/6 + 35*C(n-1,1)/7 + 370*C(n-1,2)/8 + ... + 252*C(n-1,10)/16 ]. Cf. A086026 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
1
1  5  10   10    5     1
1 35 370 1920 5835 11253 14240 11830 6230 1890 252
...
Row 2: C(i+5,5)^2 = C(i,0) + 35*C(i,1) + 370*C(i,2) + 1920*C(i,3) + 5835*C(i,4) + 11253*C(i,5) + 14240*C(i,6) + 11830*C(i,7) + 6230*C(i,8) + 1890*C(i,9) + 252*C(i,10). Hence, Sum_{i = 0..n-1} C(i+5,5)^2 = C(n,1) + 35*C(n,2) + 370*C(n,3) + 1920*C(n,4) + 5835*C(n,5) + 11253*C(n,6) + 14240*C(n,7) + 11830*C(n,8) + 6230*C(n,9) + 1890*C(n,10) + 252*C(n,11). (End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+5, 5)^n, i = 0..k), k = 0..5*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 6, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 5, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 5*p - 4}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 6, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 5, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 5*p-4, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+6, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+5, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+5,5)^n. Equivalently, let v_n denote the sequence (1, 6^n, 21^n, 56^n, ...) regarded as an infinite column vector, where 1, 6, 21, 56, ... is the sequence binomial(n+5,5) - see A000389. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..5} C(5,i)*C(k+5-i,5)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 5*n.
n-th row polynomial R(n,x) = (1 + x)^5 o (1 + x)^5 o ... o (1 + x)^5 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/5!*(1 + x)^5 * (d/dx)^5(x^5*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+5,5)^n*x^i/(1 + x)^(i+1).
(1 - x)^(5*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237202. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087110 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,6). The p-th row (p>=1) contains a(i,p) for i=1 to 6*p-5, where a(i,p) satisfies Sum_{i=1..n} C(i+5,6)^p = 7 * C(n+6,7) * Sum_{i=1..6*p-5} a(i,p) * C(n-1,i-1)/(i+6).

Original entry on oeis.org

1, 1, 6, 15, 20, 15, 6, 1, 1, 48, 687, 4850, 20385, 55908, 104959, 137886, 127050, 80640, 33642, 8316, 924, 1, 342, 21267, 527876, 7020525, 58015362, 324610399, 1297791264, 3839203452, 8595153000, 14760228672, 19560928464, 19987430694
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+6,6)^p of degree 6*p in terms of falling factorials: C(x+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,48,687,...,924, so Sum_{i=1..n} C(i+5,6)^3 = 7 * C(n+6,7) * [ a(1,3)/7 + a(2,3)*C(n-1,1)/8 + a(3,3)*C(n-1,2)/9 + ... + a(13,3)*C(n-1,12)/19 ] = 7 * C(n+6,7) * [ 1/7 + 48*C(n-1,1)/8 + 687*C(n-1,2)/9 + ... + 924*C(n-1,12)/19 ]. Cf. A086028 for more details.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+6, 6)^n, i = 0..k), k = 0..6*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 7, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 6, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 6*p - 5}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 7, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 6, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 6*p-5, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+7, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+6, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+6,6)^n. Equivalently, let v_n denote the sequence (1, 7^n, 28^n, 84^n, ...) regarded as an infinite column vector, where 1, 7, 28, 84, ... is the sequence binomial(n+6,6) - see A000579. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..6} C(6,i)*C(k+6-i,6)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 6*n.
n-th row polynomial R(n,x) = (1 + x)^6 o (1 + x)^6 o ... o (1 + x)^6 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/6!*(1 + x)^6 * (d/dx)^6(x^6*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+6,6)^n*x^i/(1 + x)^(i+1).
(1 - x)^(6*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237252. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A122193 Triangle T(n,k) of number of loopless multigraphs with n labeled edges and k labeled vertices and without isolated vertices, n >= 1; 2 <= k <= 2*n.

Original entry on oeis.org

1, 1, 6, 6, 1, 24, 114, 180, 90, 1, 78, 978, 4320, 8460, 7560, 2520, 1, 240, 6810, 63540, 271170, 604800, 730800, 453600, 113400, 1, 726, 43746, 774000, 6075900, 25424280, 61923960, 90720000, 78813000, 37422000, 7484400
Offset: 1

Views

Author

Vladeta Jovovic, Aug 24 2006

Keywords

Comments

T(n,k) equals the number of arrangements on a line of n (nondegenerate) finite closed intervals having k distinct endpoints. See the 'IBM Ponder This' link. An example is given below. - Peter Bala, Jan 28 2018
T(n,k) equals the number of alignments of length k of n strings each of length 2. See Slowinski. Cf. A131689 (alignments of strings of length 1) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018

Examples

			Triangle begins:
  1;
  1,  6,   6;
  1, 24, 114,  180,   90;
  1, 78, 978, 4320, 8460, 7560, 2520;
  ...
From _Francisco Santos_, Nov 17 2017: (Start)
For n=3 edges and k=4 vertices there are three loopless multigraphs without isolated vertices: a path, a Y-graph, and the multigraph {12, 34, 34}. The number of labelings in each is 3!4!/a, where a is the number of automorphisms. This gives respectively 3!4!/2 = 72, 3!4!/6 = 24 and 3!4!/8 = 18, adding up to 72 + 24 + 18 = 114. (End)
From _Peter Bala_, Jan 28 2018: (Start)
T(2,3) = 6: Consider 2 (nondegenerate) finite closed intervals [a, b] and [c, d]. There are 6 arrangements of these two intervals with 3 distinct endpoints:
  ...a--b--d....  a < b = c < d
  ...a...c--b...  a < c < b = d
  ...a--d...b...  a = c < d < b
  ...a--b...d...  a = c < b < d
  ...c...a--d...  c < a < b = d
  ...c--a--b....  c < a = d < b
T(2,4) = 6: There are 6 arrangements of the two intervals with 4 distinct endpoints:
  ...a--b...c--d.....  no intersection a < b < c < d
  ...a...c...b...d...  a < c < b < d
  ...a...c--d...b....  [c,d] is a proper subset of [a,b]
  ...c...a...d...b...  c < a < d < b
  ...c...a--b...d... [a,b] is a proper subset of [c,d]
  ...c--d...a--b.....  no intersection c < d < a < b.
Sums of powers of triangular numbers:
Row 2: Sum_{i = 2..n-1} C(i,2)^2 = C(n,3) + 6*C(n,4) + 6*C(n,5);
Row 3: Sum_{i = 2..n-1} C(i,2)^3 = C(n,3) + 24*C(n,4) + 114*C(n,5) + 180*C(n,6) + 90*C(n,7). See A024166 and A085438.
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 19*x^2 + 1147*x^3 + 145606*x^4 + 31784062*x^5 + ... )^4
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 37*x^2 + 4453*x^3 + 1126375*x^4 + 489185863*x^5 + ... )^9
exp( Sum_{n >= 1} R(n,4)*x^n/n ) = (1 + x + 61*x^2 + 12221*x^3 + 5144411*x^4 + 3715840571*x^5 + ... )^16 (End)
From _Peter Bala_, Feb 04 2018: (Start)
T(3,3) = 24 alignments of length 3 of 3 strings each of length 2. Examples include
  (i) A B -    (ii) A - B
      - C D         - C D
      - E F         E F -
There are 18 alignments of type (i) with two gap characters in one of the columns (3 ways of putting 2 gap characters in a column x 2 ways to place the other letter in the row which doesn't yet have a gap character x 3 columns: there are 6 alignments of type (ii) with a single gap character in each column (3 ways to put a single gap character in the first column x 2 ways to then place a single gap character in the second column). (End)
		

Crossrefs

Row sums give A055203.
For Sum_{i = 2..n} C(i,2)^k see A024166 (k = 2), A085438 - A085442 ( k = 3 thru 7).

Programs

  • Maple
    # Note that the function implements the full triangle because it can be
    # much better reused and referenced in this form.
    A122193 := (n,k) -> A078739(n,k)*k!/2^n:
    # Displays the truncated triangle from the definition:
    seq(print(seq(A122193(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
  • Mathematica
    t[n_, k_] := Sum[(-1)^(n - r) Binomial[n, r] StirlingS2[n + r, k], {r, 0, n}]; Table[t[n, k] k!/2^n, {n, 6}, {k, 2, 2 n}] // Flatten (* Michael De Vlieger, Nov 18 2017, after Jean-François Alcover at A078739 *)

Formula

Double e.g.f.: exp(-x)*Sum_{n>=0} exp(binomial(n,2)*y)*x^n/n!.
T(n,k) = S_{2,2}(n,k)*k!/2^n; S_{2,2} the generalized Stirling numbers A078739. - Peter Luschny, Mar 25 2011
From Peter Bala, Jan 28 2018: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
T(n,k) = k*(k-1)/2*( T(n-1,k) + 2*T(n-1,k-1) + T(n-1,k-2) ) for 2 < k <= 2*n with boundary conditions T(n,2) = 1 for n >= 1 and T(n,k) = 0 if (k < 2) or (k > 2*n).
n-th row polynomial R(n,x) = Sum_{i >= 2} (i*(i-1)/2)^n * x^i/(1+x)^(i+1) for n >= 1.
1/(1-x)*R(n,x/(1-x)) = Sum_{i >= 2} (i*(i-1)/2)^n*x^i for n >= 1.
R(n,x) = 1/2^n*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*F(n+k,x), where F(n,x) = Sum_{k = 0..n} k!*Stirling2(n,k)*x^k is the n-th Fubini polynomial, the n-th row polynomial of A131689.
R(n,x) = x/(1+x)*1/2^n*Sum_{k = 0..n} binomial(n,k)*F(n+k,x) for n >= 1.
The polynomials Sum_{k = 2..2*n} T(n,k)*x^(k-2)*(1-x)^(2*n-k) are the row polynomials of A154283.
A154283 * A007318 equals the row reverse of this array.
Sum_{k = 2..2*n} T(n,k)*binomial(x,k) = ( binomial(x,2) )^n. Equivalently, Sum_{k = 2..2*n} (-1)^k*T(n,k)*binomial(x+k,k) = ( binomial(x+2,2) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n} A019538(n,k)*binomial(x,k) = x^n.
Sum_{i = 2..n-1} (i*(i-1)/2)^m = Sum_{k = 2..2*m} T(m,k) * binomial(n,k+1) for m >= 1. See Examples below.
R(n,x) = x^2 o x^2 o ... o x^2 (n factors), where o is the black diamond product of power series defined in Dukes and White. Note the polynomial x o x o ... o x (n factors) is the n-th row polynomial of A019538.
x^2*R(n,-1-x) = (1+x)^2*R(n,x) for n >= 1.
R(n+1,x) = 1/2*x^2*(d/dx)^2 ((1+x)^2*R(n,x)).
The zeros of R(n,x) belong to the interval [-1, 0].
Alternating row sums equal 1, that is R(n,-1) = 1.
R(n,-2) = 4*R(n,1) = 4*A055203(n).
4^n*Sum_{k = 2..2*n} T(n,k)*(-1/2)^k appears to equal (-1)^(n+1)*A005799(n) for n >= 1.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^2*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 2..2*n} T(n,k)*binomial(x,k-2) = binomial(x,2)^n - 2*binomial(x+1,2)^n + binomial(x+2,2)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane (the corresponding property also holds for the row polynomials of A019538 with a factor of x removed). (End)
From Peter Bala, Mar 08 2018: (Start)
n-th row polynomial R(n,x) = coefficient of (z_1)^2 * ... * (z_n)^2 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The n-th row of the table is given by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318 and v_n is the sequence (0, 0, 1, 3^n, 6^n, 10^n, ...) regarded as an infinite column vector, where 1, 3, 6, 10, ... is the sequence of triangular numbers A000217. Cf. A087127. (End)

Extensions

Definition corrected by Francisco Santos, Nov 17 2017

A334781 Array read by antidiagonals: T(n,k) = Sum_{i=1..n} binomial(1+i,2)^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 10, 10, 4, 0, 1, 28, 46, 20, 5, 0, 1, 82, 244, 146, 35, 6, 0, 1, 244, 1378, 1244, 371, 56, 7, 0, 1, 730, 8020, 11378, 4619, 812, 84, 8, 0, 1, 2188, 47386, 108020, 62003, 13880, 1596, 120, 9, 0, 1, 6562, 282124, 1047386, 867395, 256484, 35832, 2892, 165, 10
Offset: 0

Views

Author

Andrew Howroyd, May 15 2020

Keywords

Examples

			Array begins:
===============================================================
n\k | 0  1    2     3      4        5         6           7
----|----------------------------------------------------------
  0 | 0  0    0     0      0        0         0           0 ...
  1 | 1  1    1     1      1        1         1           1 ...
  2 | 2  4   10    28     82      244       730        2188 ...
  3 | 3 10   46   244   1378     8020     47386      282124 ...
  4 | 4 20  146  1244  11378   108020   1047386    10282124 ...
  5 | 5 35  371  4619  62003   867395  12438011   181141499 ...
  6 | 6 56  812 13880 256484  4951496  98204132  1982230040 ...
  7 | 7 84 1596 35832 871140 22161864 580094436 15475158552 ...
  ...
		

Crossrefs

Rows n=0..3 are A000004, A000012, A034472, A074508.
Main diagonal is A249564(n > 0).
Cf. A154283 (coefficients).

Programs

  • PARI
    T(n,k) = {sum(i=1, n, binomial(1+i,2)^k)}

Formula

T(n,k) = Sum_{i=0..2*(k-1)} A154283(k,i) * binomial(n+2+i, 2*k+i) for k > 0.
Previous Showing 21-25 of 25 results.