cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A293442 Multiplicative with a(p^e) = A019565(e).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 6, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 12, 3, 4, 6, 6, 2, 8, 2, 10, 4, 4, 4, 9, 2, 4, 4, 12, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 12, 4, 12, 4, 4, 2, 12, 2, 4, 6, 15, 4, 8, 2, 6, 4, 8, 2, 18, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 12, 2, 12, 4, 6, 4, 4, 4, 20, 2, 6, 6, 9, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2017

Keywords

Comments

From Peter Munn, Apr 06 2021: (Start)
a(n) is determined by the prime signature of n.
Compare with the multiplicative, self-inverse A225546, which also maps 2^e to the squarefree number A019565(e). However, this sequence maps p^e to the same squarefree number for every prime p, whereas A225546 maps the e-th power of progressively larger primes to progressively greater powers of A019565(e).
Both sequences map powers of squarefree numbers to powers of squarefree numbers.
(End)

Crossrefs

Sequences used in a definition of this sequence: A000188, A003961, A019565, A028234, A059895, A067029, A162642.
Sequences with related definitions: A225546, A293443, A293444.
Cf. also A293214.
Sequences used to express relationship between terms of this sequence: A006519, A007913, A008833, A064989, A334747.
Sequences related via this sequence: (A001222, A048675, A064547), (A007814, A162642), (A087207, A267116), (A248663, A268387).

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Apply[Times, Prime@ Flatten@ Position[Reverse@ IntegerDigits[Last@ #, 2], 1]] * f[n/Apply[Power, #]] &@ FactorInteger[n][[1]]]; Array[f, 105] (* Michael De Vlieger, Oct 31 2017 *)

Formula

a(1) = 1; for n > 1, a(n) = A019565(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
a(a(n)) = A293444(n).
A048675(a(n)) = A001222(n).
A001222(a(n)) = A064547(n) = A048675(A293444(n)).
A007814(a(n)) = A162642(n).
A087207(a(n)) = A267116(n).
A248663(a(n)) = A268387(n).
From Peter Munn, Mar 14 2021: (Start)
Alternative definition: a(1) = 1; a(2) = 2; a(n^2) = A003961(a(n)); a(A003961(n)) = a(n); if A059895(n, k) = 1, a(n*k) = a(n) * a(k).
For n >= 3, a(n) < n.
a(2n) = A334747(a(A006519(n))) * a(n/A006519(n)), where A006519(n) is the largest power of 2 dividing n.
a(2n+1) = a(A064989(2n+1)).
a(n) = a(A007913(n)) * a(A008833(n)) = 2^A162642(n) * A003961(a(A000188(n))).
(End)

A048672 Binary encoding of squarefree numbers (A005117): A048640(n)/2.

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 5, 16, 32, 9, 6, 64, 128, 10, 17, 256, 33, 512, 7, 1024, 18, 65, 12, 2048, 129, 34, 4096, 11, 8192, 257, 16384, 66, 32768, 20, 130, 513, 65536, 131072, 1025, 36, 19, 262144, 258, 13, 524288, 1048576, 2049, 24, 35, 2097152, 4097, 4194304, 68
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Permutation of nonnegative integers. Note the indexing, the domain starts from 1, although the range includes also 0.
A246353 gives the inverse of this sequence, in a sense that a(A246353(n)) = n for all n >= 0, and A246353(a(n)) = n for all n >= 1. When one is subtracted from the latter, another permutation of nonnegative integers is obtained: A064273. - Antti Karttunen, Aug 23 2014 based on comment from Howard A. Landman, Sep 25 2001
Also index of n-th term of A019565 when its terms are sorted in increasing order. For example: a(6) = 8. The smallest values of A019565 are 1,2,3,5,6,7 . The 6th is 7 which is A019565(8). - Philippe Lallouet (philip.lallouet(AT)orange.fr), Apr 28 2008
a(n) is the number whose binary indices are the prime indices of the n-th squarefree number (row n of A329631), where a binary index of n is any position of a 1 in its reversed binary expansion, and a prime index of n is a number m such that prime(m) divides n. The binary indices of n are row n of A048793, while the prime indices of n are row n of A112798. - Gus Wiseman, Nov 30 2019

Examples

			From _Gus Wiseman_, Nov 30 2019: (Start)
The sequence of squarefree numbers together with their prime indices (A329631) and the number a(n) with those binary indices begins:
   1 ->  {}      ->   0
   2 ->  {1}     ->   1
   3 ->  {2}     ->   2
   5 ->  {3}     ->   4
   6 ->  {1,2}   ->   3
   7 ->  {4}     ->   8
  10 ->  {1,3}   ->   5
  11 ->  {5}     ->  16
  13 ->  {6}     ->  32
  14 ->  {1,4}   ->   9
  15 ->  {2,3}   ->   6
  17 ->  {7}     ->  64
  19 ->  {8}     -> 128
  21 ->  {2,4}   ->  10
  22 ->  {1,5}   ->  17
  23 ->  {9}     -> 256
  26 ->  {1,6}   ->  33
  29 ->  {10}    -> 512
  30 ->  {1,2,3} ->   7
(End)
		

Crossrefs

Inverse: A246353 (see also A064273).
Cf. A019565.
A similar encoding of set-systems is A329661.
Cf. A087207.

Programs

  • Maple
    encode_sqrfrees := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if(0 <> mobius(i)) then b := [ op(b), bef(i) ]; fi; od: RETURN(b); end; # see A048623 for bef
  • Mathematica
    Join[{0}, Total[2^(PrimePi[FactorInteger[#][[All, 1]]] - 1)]& /@ Select[ Range[2, 100], SquareFreeQ]] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (issquarefree(n), if (n==1, x = 0, f = factor(n); x = sum(k=1, #f~, 2^(primepi(f[k, 1])-1))); print1(x, ", "); ); ); } \\ Michel Marcus, Oct 02 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, primefactors
    def A048672(n):
        if n == 1: return 0
        def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return sum(1<Chai Wah Wu, Feb 22 2025

Formula

a(n) = 2^(i1-1)+2^(i2-1)+...+2^(iz-1), where A005117(n) = p_i1*p_i2*p_i3*...*p_iz.
A019565(a(n)) = A005117(n). - Peter Munn, Nov 19 2019
A000120(a(n)) = A072047(n). - Gus Wiseman, Nov 30 2019
a(n) = A087207(A005117(n)). - Flávio V. Fernandes, Feb 26 2025

A285332 a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 8, 15, 12, 14, 27, 10, 25, 7, 16, 210, 45, 35, 18, 105, 28, 462, 81, 21, 20, 154, 125, 30, 49, 11, 32, 10659, 420, 910, 75, 78, 175, 33, 24, 3094, 315, 385, 56, 780045, 924, 374, 243, 110, 63, 55, 40, 4389, 308, 170170, 625, 1155, 60, 286, 343, 42, 121, 13, 64, 54230826, 31977, 28405, 630, 1330665, 1820, 714
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A019565(n), and each right hand child as A065642(n), when the parent node contains n >= 2:
1
|
...................2...................
3 4
6......../ \........9 5......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
15 12 14 27 10 25 7 16
210 45 35 18 105 28 462 81 21 20 154 125 30 49 11 32
etc.
Where will 38 appear in this tree? It is a reasonable assumption that by iterating A087207 starting from 38, as A087207(38) = 129, A087207(129) = 8194, A087207(8194) = 1501199875790187, ..., we will eventually hit a prime A000040(k), most likely with a largish index k. This prime occurs at the penultimate edge at right, as a(A000918(k)) = a((2^k)-2), and thus 38 occurs somewhere below it as a(m) = 38, m > k. All the numbers that share prime factors with 38, namely 76, 152, 304, 608, 722, ..., occur similarly late in this tree, as they form the rightward branch starting from 38. Alternatively, by iterating A285330 (each iteration moves one step towards the root) starting from 38, we might instead first hit some power of 3, or say, one of the terms of A033845 (the rightward branch starting from 6), in which case the first prime encountered would be a(2)=3 and 38 would appear on the left-hand side instead of the right-hand side subtree.
As long as it remains conjecture that A019565 has no cycles, it is certainly also an open question whether this is a permutation of the natural numbers: If A019565 has any cycles, then neither any of the terms in those cycles nor any A065642-trajectories starting from those terms (that is, numbers sharing same prime factors) may occur in this tree.
Sequence exhibits some outrageous swings, for example, a(703) = 224, but a(704) is 1427 decimal digits (4739 binary digits) long, thus it no longer fits into a b-file.
However, the scatter plot of A286543 gives some flavor of the behavior of this sequence even after that point. - Antti Karttunen, Dec 25 2017

Crossrefs

Inverse: A285331.
Compare also to permutation A285112 and array A285321.

Programs

  • Mathematica
    Block[{a = {1, 2}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[a[[i/2 + 1]], 2], If[# == 1, 1, Function[{n, c}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &]] @@ {#, Times @@ FactorInteger[#][[All, 1]]}] &[a[[(i - 1)/2 + 1]] ] ]], {i, 2, 70}]; a] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    for(n=0, 4095, write("b285332.txt", n, " ", A285332(n)));
    
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def a(n):
        if n<2: return n + 1
        if n%2==0: return a019565(a(n//2))
        else: return a065642(a((n - 1)//2))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    ;; With memoization-macro definec.
    (definec (A285332 n) (cond ((<= n 1) (+ n 1)) ((even? n) (A019565 (A285332 (/ n 2)))) (else (A065642 (A285332 (/ (- n 1) 2))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).
For n >= 0, a(2^n) = A109162(2+n). [The left edge of the tree.]
For n >= 0, a(A000225(n)) = A000079(n). [Powers of 2 occur at the right edge of the tree.]
For n >= 2, a(A000918(n)) = A000040(n). [And the next vertices inwards contain primes.]
For n >= 2, a(A036563(1+n)) = A001248(n). [Whose right children are their squares.]
For n >= 0, a(A055010(n)) = A000244(n). [Powers of 3 are at the rightmost edge of the left subtree.]
For n >= 2, a(A129868(n-1)) = A062457(n).
A048675(a(n)) = A285333(n).
A046523(a(n)) = A286542(n).

A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.

Original entry on oeis.org

1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2017

Keywords

Comments

This sequence is a variant of A256739; both sequences have nice graphical features.
Replacing "SumXOR" by "Sum" in the name leads to the Jordan function J_2 (A007434).
For any sequence f of nonnegative integers with positive indices:
- let x_f be the unique sequence satisfying SumXOR_{d divides n} x_f(d) = f(n) for any n > 0,
- in particular, x_A000027 = A256739 and x_A000290 = a (this sequence),
- also, x_A178910 = A000027 and x_A055895 = A000079,
- see the links section for a gallery of x_f plots for some classic f functions,
- x_f(1) = f(1),
- x_f(p) = f(1) XOR f(p) for any prime p,
- x_f(n) = SumXOR_{d divides n and n/d is squarefree} f(d) for any n > 0,
- the function x: f -> x_f is a bijection,
- A000004 is the only fixed point of x (i.e. x_f = f if and only if f = A000004),
- for any sequence f, x_{2*f} = 2 * x_f,
- for any sequences g and f, x_{g XOR f} = x_g XOR x_f.
From Antti Karttunen, Dec 29 2017: (Start)
The transform x_f described above could be called "Xor-Moebius transform of f" because of its analogous construction to Möbius transform with A008683 replaced by A008966 and the summation replaced by cumulative XOR.
(End)

Crossrefs

Programs

  • PARI
    a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)

Formula

a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.

A277905 Irregular table: Each row n (n >= 0) lists in ascending order all A018819(n) numbers k for which A048675(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 16, 10, 18, 24, 32, 15, 20, 27, 36, 48, 64, 30, 40, 54, 72, 96, 128, 7, 25, 45, 60, 80, 81, 108, 144, 192, 256, 14, 50, 90, 120, 160, 162, 216, 288, 384, 512, 21, 28, 75, 100, 135, 180, 240, 243, 320, 324, 432, 576, 768, 1024, 42, 56, 150, 200, 270, 360, 480, 486, 640, 648, 864, 1152, 1536, 2048, 35, 63, 84, 112, 125, 225, 300, 400
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2016

Keywords

Comments

Each row beginning with an odd number (rows with even index) is followed by a row of the same length, with the same terms, but multiplied by 2. See also comments in the Formula section of A018819.
Note that although the indexing of rows start from zero, the indexing of this sequence starts from 1, with a(1) = 1.
Also Heinz numbers of integer partitions whose binary rank is n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). For example, row n = 6 is 15, 20, 27, 36, 48, 64, corresponding to the partitions (3,2), (3,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1). - Gus Wiseman, May 25 2024
Also, row n lists in ascending order all A018819(n) numbers k for which A097248(k) = A019565(n). - Flávio V. Fernandes, Jul 19 2025

Examples

			The irregular table begins as:
  row terms
   0   1;
   1   2;
   2   3,  4;
   3   6,  8;
   4   5,  9,  12,  16;
   5  10, 18,  24,  32;
   6  15, 20,  27,  36,  48,  64;
   7  30, 40,  54,  72,  96, 128;
   8   7, 25,  45,  60,  80,  81, 108, 144, 192, 256;
   9  14, 50,  90, 120, 160, 162, 216, 288, 384, 512;
  10  21, 28,  75, 100, 135, 180, 240, 243, 320, 324, 432,  576,  768, 1024;
  11  42, 56, 150, 200, 270, 360, 480, 486, 640, 648, 864, 1152, 1536, 2048;
...
		

Crossrefs

Cf. A019565 (the left edge, the only terms that are squarefree).
Cf. A000079 (the trailing edge).
Row lengths are A018819 (number of partitions of binary rank n).
A000009 counts strict partitions, ranks A005117.
A029837 stc_sum or A070939 bin_len, opposite A070940 binexp_lastpos_1.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, cf. A001222, A003963, A056239, A296150.
A372890 adds up binary ranks of partitions, strict A372888.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Select[Range[0,2^k],Total[2^(prix[#]-1)]==k&],{k,0,10}] (* Gus Wiseman, May 25 2024 *)
  • Scheme
    (definec (A277905 n) (A277905bi (A277903 n) (A277904 n)))
    (define (A277905bi row col) (let outloop ((k (A019565 row)) (col col)) (if (zero? col) k (let inloop ((j (+ 1 k))) (if (= (A048675 j) row) (outloop j (- col 1)) (inloop (+ 1 j))))))) ;; Very slow implementation.
    ;; Implementation based on a naive recurrence:
    (definec (A277905 n) (if (= 1 n) n (let ((maybe_next (A277896 (A277905 (- n 1))))) (if (not (zero? maybe_next)) maybe_next (A019565 (A277903 n))))))

Formula

a(1) = 1; for n > 1, if A277896(a(n-1)) > 0, then a(n) = A277896(a(n-1)), otherwise a(n) = A019565(A277903(n)). [A naive recurrence for a one-dimensional version.]
Other identities. For all n >= 1:
A048675(a(n)) = A277903(n).

A285321 Square array A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)), read by descending antidiagonals.

Original entry on oeis.org

2, 3, 4, 6, 9, 8, 5, 12, 27, 16, 10, 25, 18, 81, 32, 15, 20, 125, 24, 243, 64, 30, 45, 40, 625, 36, 729, 128, 7, 60, 75, 50, 3125, 48, 2187, 256, 14, 49, 90, 135, 80, 15625, 54, 6561, 512, 21, 28, 343, 120, 225, 100, 78125, 72, 19683, 1024
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

A permutation of the natural numbers > 1.
Otherwise like array A284311, but the columns come in different order.

Examples

			The top left 12x6 corner of the array:
   2,   3,  6,     5,  10,  15,  30,      7,  14,  21,  42,   35
   4,   9, 12,    25,  20,  45,  60,     49,  28,  63,  84,  175
   8,  27, 18,   125,  40,  75,  90,    343,  56, 147, 126,  245
  16,  81, 24,   625,  50, 135, 120,   2401,  98, 189, 168,  875
  32, 243, 36,  3125,  80, 225, 150,  16807, 112, 441, 252, 1225
  64, 729, 48, 15625, 100, 375, 180, 117649, 196, 567, 294, 1715
		

Crossrefs

Transpose: A285322.
Cf. A008479 (index of the row where n is located), A087207 (of the column).
Cf. arrays A284311, A285325, also A285332.

Programs

  • Mathematica
    a065642[n_] := Module[{k}, If[n == 1, Return[1], k = n + 1; While[ EulerPhi[k]/k != EulerPhi[n]/n, k++]]; k];
    A[1, k_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[ IntegerDigits[k, 2]]];
    A[n_ /; n > 1, k_] := A[n, k] = a065642[A[n - 1, k]];
    Table[A[n - k + 1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 17 2019 *)
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k))
    for n in range(1, 11): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    (define (A285321 n) (A285321bi (A002260 n) (A004736 n)))
    (define (A285321bi row col) (if (= 1 row) (A019565 col) (A065642 (A285321bi (- row 1) col))))
    

Formula

A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)).
For all n >= 2: A(A008479(n), A087207(n)) = n.

A289271 A bijective binary representation of the prime factorization of a number, shown in decimal (see Comments for precise definition).

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 16, 32, 64, 5, 128, 6, 256, 9, 10, 512, 1024, 17, 2048, 12, 18, 33, 4096, 34, 8192, 65, 16384, 20, 32768, 7, 65536, 131072, 66, 129, 24, 36, 262144, 257, 130, 40, 524288, 11, 1048576, 68, 72, 513, 2097152, 258, 4194304, 1025, 514, 132
Offset: 1

Views

Author

Rémy Sigrist, Jun 30 2017

Keywords

Comments

For n > 0, with prime factorization Product_{i=1..k} p_i ^ e_i (all p_i distinct and all e_i > 0):
- let S_n = A000961 \ { p_i ^ (e_i + j) with i=1..k and j > 0 },
- a(n) = Sum_{i=1..k} 2^#{ s in S_n with 1 < s < p_i ^ e_i }.
In an informal way, we encode the prime powers > 1 that are unitary divisors of n as 1's in binary, while discarding the 0's corresponding to their "proper" multiples.
a(A002110(n)) = 2^n-1 for any n >= 0.
a(A000961(n+1)) = 2^(n-1) for any n > 0.
A000120(a(n)) = A001221(n) for any n > 0 (each prime divisor p of n (alongside the p-adic valuation of n) is encoded as a single 1 bit in the base-2 representation of a(n)).
A000961(2+A007814(a(n))) = A034684(n) for any n > 1 (the least significant bit of a(n) encodes the smallest unitary divisor of n that is larger than 1).
This sequence establishes a bijection between the positive numbers and the nonnegative numbers; see A289272 for the inverse of this sequence.
The numbers 4, 36, 40 and 532 equal their image; are there other such numbers?
This sequence has connections with A034729 (which encodes the divisors of a number, and is not surjective) and A087207 (which encodes the prime divisors of a number, and is not injective).

Examples

			For n = 204 = 2^2 * 3 * 17:
- S_204 = A000961 \ { 2^3, 2^4, ..., 3^2, ... }
        = { 1, 2, 3, 4, 5, 7, 11, 13, 17, ... },
- a(204) = 2^#{ 2, 3 } + 2^#{ 2 } + 2^#{ 2, 3, 4, 5, 7, 11, 13 }
         = 2^2 + 2^1 + 2^7
         = 134.
See also the illustration of the first terms in Links section.
		

Crossrefs

Cf. also A156552, A052331 for similar constructions.

Programs

  • PARI
    See Links section.
    
  • PARI
    A289271(n) = { my(f = factor(n), pps = vecsort(vector(#f~, i, f[i, 1]^f[i, 2])), s=0, x=1, pp=1, k=-1); for(i=1,#f~, while(pp < pps[i], pp++; while(!isprimepower(pp)||(gcd(pp,x)>1), pp++); k++); s += 2^k; x *= pp); (s); }; \\ Antti Karttunen, Jan 01 2019

A300820 Length of the longest sequence of consecutive primes in the prime factorization of n. a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 21 2018

Keywords

Examples

			For n = 350 = 2 * 5^2 * 7 = prime(1) * prime(3)^2 * prime(4), the longest stretch of consecutive primes is from prime(3) to prime(4), with length 2, thus a(350) = 2.
		

Crossrefs

Cf. A038374, A087207, A104210 (positions of terms > 1), A296210.
Cf. also A167447.

Programs

  • PARI
    A300820(n) = if(omega(n)<=1, omega(n), my(pis=apply(p->primepi(p),factor(n)[,1]),el=1,m=1); for(i=2,#pis,if(pis[i] == (1+pis[i-1]),el++; m = max(m,el), el=1)); (m));
    
  • PARI
    a(n) = {if(n == 1, return(0)); my(res = 1, f = factor(n)[, 1]~, t = 1);
    for(i = 1, #f - 1, if(f[i+1]==nextprime(f[i]+1), t++, res = max(res, t);  t = 1)); max(res, t)} \\ David A. Corneth, Mar 21 2018

Formula

For n > 1, a(n) = A038374(A087207(n)).
For n >= 0, a(A002110(n)) = n. [Primorials give the positions of the records = the first occurrence of each n.]

A353783 a(n) = LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 6, 12, 28, 14, 24, 12, 31, 18, 39, 20, 42, 8, 12, 24, 60, 31, 42, 40, 56, 30, 12, 32, 63, 12, 18, 24, 91, 38, 60, 28, 30, 42, 24, 44, 84, 78, 24, 48, 124, 57, 93, 36, 14, 54, 120, 12, 120, 20, 30, 60, 84, 62, 96, 104, 127, 42, 12, 68, 126, 24, 24, 72, 195, 74, 114, 124, 140, 24, 84, 80
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Cf. also A345044, A345046.
Cf. A336547 (positions where equal to sigma).

Programs

  • Mathematica
    Array[LCM @@ DivisorSigma[1, Power @@@ FactorInteger[#]] &, 79] (* Michael De Vlieger, May 08 2022 *)
  • PARI
    A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };

Formula

a(n) = A000203(n) / A353784(n).
a(n) = A353785(n) * A080398(n).
For all n >= 1, A087207(a(n)) = A351560(n).

A372890 Sum of binary ranks of all integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).

Original entry on oeis.org

0, 1, 4, 10, 25, 52, 115, 228, 471, 931, 1871, 3687, 7373, 14572, 29049, 57694, 115058, 229101, 457392, 912469, 1822945, 3640998, 7277426, 14544436, 29079423, 58137188, 116254386, 232465342, 464889800, 929691662, 1859302291, 3718428513, 7436694889, 14873042016
Offset: 0

Views

Author

Gus Wiseman, May 23 2024

Keywords

Examples

			The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4 with sum 25, so a(4) = 25.
		

Crossrefs

For Heinz number (not binary rank) we have A145519, row sums of A215366.
For Heinz number the strict version is A147655, row sums of A246867.
The strict version is A372888, row sums of A118462.
A005117 gives Heinz numbers of strict integer partitions.
A048675 gives binary rank of prime indices, distinct A087207.
A061395 gives greatest prime index, least A055396.
A118457 lists strict partitions in Mathematica order.
A277905 groups all positive integers by binary rank of prime indices.
Binary indices (A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- max A029837 or A070939, opposite A070940
- sum A029931, product A096111
- reverse A272020
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
          b(n, i-1)+(p->[0, p[1]*2^(i-1)]+p)(b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..33);  # Alois P. Heinz, May 23 2024
  • Mathematica
    Table[Total[Total[2^(#-1)]&/@IntegerPartitions[n]],{n,0,10}]

Formula

From Alois P. Heinz, May 23 2024: (Start)
a(n) = Sum_{k=1..n} 2^(k-1) * A066633(n,k).
a(n) mod 2 = A365410(n-1) for n>=1. (End)
Previous Showing 21-30 of 51 results. Next