A365321
Number of pairs of distinct positive integers <= n that cannot be linearly combined with positive coefficients to obtain n.
Original entry on oeis.org
0, 0, 1, 2, 4, 6, 10, 13, 18, 24, 30, 37, 46, 54, 63, 77, 85, 99, 111, 127, 141, 161, 171, 194, 210, 235, 246, 277, 293, 322, 342, 372, 389, 428, 441, 491, 504, 545, 561, 612, 635, 680, 701, 753, 773, 836, 846, 911, 932, 1000, 1017, 1082, 1103, 1176, 1193
Offset: 0
For the pair p = (2,3) we have 4 = 2*2 + 0*3, so p is not counted under A365320(4), but it is not possible to write 4 as a positive linear combination of 2 and 3, so p is counted under a(4).
The a(2) = 1 through a(7) = 13 pairs:
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,3) (2,3) (2,4) (2,3) (2,4)
(2,4) (2,5) (2,5) (2,6)
(3,4) (3,4) (2,6) (2,7)
(3,5) (3,4) (3,5)
(4,5) (3,5) (3,6)
(3,6) (3,7)
(4,5) (4,5)
(4,6) (4,6)
(5,6) (4,7)
(5,6)
(5,7)
(6,7)
For all subsets instead of just pairs we have
A365322, complement
A088314.
A004526 counts partitions of length 2, shift right for strict.
A364350 counts combination-free strict partitions.
Cf.
A070880,
A088571,
A088809,
A151897,
A326020,
A365043,
A365073,
A365311,
A365312,
A365378,
A365380.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n],{2}], combp[n,#]=={}&]],{n,0,30}]
-
from itertools import count
from sympy import divisors
def A365321(n):
a = set()
for i in range(1,n+1):
for j in count(i,i):
if j >= n:
break
for d in divisors(n-j):
if d>=i:
break
a.add((d,i))
return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 12 2023
A365379
Number of integer partitions with sum <= n whose distinct parts can be linearly combined using nonnegative coefficients to obtain n.
Original entry on oeis.org
0, 1, 3, 5, 10, 14, 27, 35, 61, 83, 128, 166, 264, 327, 482, 632, 882, 1110, 1565, 1938, 2663, 3339, 4401, 5471, 7290, 8921, 11555, 14291, 18280, 22303, 28507, 34507, 43534, 52882, 65798, 79621, 98932, 118629, 146072, 175562, 214708, 256351, 312583, 371779
Offset: 0
The partition (4,2,2) cannot be linearly combined to obtain 9, so is not counted under a(9). On the other hand, the same partition (4,2,2) has distinct parts {2,4} and has 10 = 1*2 + 2*4, so is counted under a(10).
The a(1) = 1 through a(5) = 14 partitions:
(1) (1) (1) (1) (1)
(2) (3) (2) (5)
(11) (11) (4) (11)
(21) (11) (21)
(111) (21) (31)
(22) (32)
(31) (41)
(111) (111)
(211) (211)
(1111) (221)
(311)
(1111)
(2111)
(11111)
For subsets with positive coefficients we have
A088314, complement
A088528.
The case of strict partitions with positive coefficients is also
A088314.
The complement is counted by
A365378.
A364350 counts combination-free strict partitions, non-strict
A364915.
A364839 counts combination-full strict partitions, non-strict
A364913.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Join@@Array[IntegerPartitions,n],combs[n,Union[#]]!={}&]],{n,0,10}]
-
from sympy.utilities.iterables import partitions
def A365379(n):
a = {tuple(sorted(set(p))) for p in partitions(n)}
return sum(1 for m in range(1,n+1) for b in partitions(m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023
A070880
Consider the 2^(n-1)-1 nonempty subsets S of {1, 2, ..., n-1}; a(n) gives number of such S for which it is impossible to partition n into parts from S such that each s in S is used at least once.
Original entry on oeis.org
0, 0, 1, 3, 10, 22, 52, 110, 234, 482, 987, 1997, 4035, 8113, 16288, 32644, 65388, 130886, 261922, 524013, 1048250, 2096752, 4193831, 8388033, 16776543, 33553621, 67107918, 134216596, 268434139, 536869354, 1073740011, 2147481510, 4294964833, 8589931699
Offset: 1
a(4)=3 because there are three different subsets S of {1,2,3} satisfying the condition: {3}, {2,3} & {1,2,3}. For the other subsets S, such as {1,2}, there is a partition of 4 which uses them all (such as 4 = 1+1+2).
From _Gus Wiseman_, Sep 10 2023: (Start)
The a(6) = 22 subsets:
{4} {2,3} {1,2,4} {1,2,3,4} {1,2,3,4,5}
{5} {2,5} {1,2,5} {1,2,3,5}
{3,4} {1,3,4} {1,2,4,5}
{3,5} {1,3,5} {1,3,4,5}
{4,5} {1,4,5} {2,3,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}
(End)
For sets with sum < n instead of maximum < n we have
A088528.
Allowing empty sets gives
A365045, nonnegative version apparently
A124506.
Without re-usable parts we have
A365377(n) - 1.
For nonnegative (instead of positive) coefficients we have
A365380(n) - 1.
A364350 counts combination-free strict partitions, complement
A364913.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[Rest[Subsets[Range[n-1]]], combp[n,#]=={}&]],{n,7}] (* Gus Wiseman, Sep 10 2023 *)
-
from sympy.utilities.iterables import partitions
def A070880(n): return (1<Chai Wah Wu, Sep 10 2023
A088887
Number of different prime signatures of the m values when A056239(m) is equal to n.
Original entry on oeis.org
1, 1, 2, 3, 5, 5, 10, 10, 16, 18, 24, 27, 41, 42, 54, 63, 82, 88, 114, 123, 153, 169, 205, 224, 279, 296, 356, 389, 463, 499, 592, 638, 750, 803, 939, 996, 1173, 1253, 1441, 1543, 1772, 1891, 2158, 2305, 2619, 2780, 3166, 3358, 3805, 4026, 4522, 4810, 5405
Offset: 0
a(7) = 10: [1], [7], [1,1], [1,2], [1,3] [1,4], [1,5], [2,3], [1,1,1], [1,1,2].
-
b:= proc(n, i) option remember; `if`(n=0, {[]}, `if`(i<1, {},
{b(n, i-1)[], seq(map(x->sort([x[], j]),
b(n-i*j, i-1))[], j=1..n/i)}))
end:
a:= n-> nops(b(n, n)):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 19 2013
-
a[n_] := Sort /@ ((Length /@ Split[#])& /@ IntegerPartitions[n]) // Union // Length;
a /@ Range[0, 50] (* Jean-François Alcover, Oct 31 2020 *)
-
from sympy.utilities.iterables import partitions
def A088887(n): return len({tuple(sorted(p.values())) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023
A365315
Number of unordered pairs of distinct positive integers <= n that can be linearly combined using positive coefficients to obtain n.
Original entry on oeis.org
0, 0, 0, 1, 2, 4, 5, 8, 10, 12, 15, 18, 20, 24, 28, 28, 35, 37, 42, 44, 49, 49, 60, 59, 66, 65, 79, 74, 85, 84, 93, 93, 107, 100, 120, 104, 126, 121, 142, 129, 145, 140, 160, 150, 173, 154, 189, 170, 196, 176, 208, 193, 223, 202, 238, 203, 241, 227, 267, 235
Offset: 0
We have 19 = 4*3 + 1*7, so the pair (3,7) is counted under a(19).
For the pair p = (2,3), we have 4 = 2*2 + 0*3, so p is counted under A365314(4), but it is not possible to write 4 as a positive linear combination of 2 and 3, so p is not counted under a(4).
The a(3) = 1 through a(10) = 15 pairs:
(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)
(1,3) (1,3) (1,3) (1,3) (1,3) (1,3) (1,3)
(1,4) (1,4) (1,4) (1,4) (1,4) (1,4)
(2,3) (1,5) (1,5) (1,5) (1,5) (1,5)
(2,4) (1,6) (1,6) (1,6) (1,6)
(2,3) (1,7) (1,7) (1,7)
(2,5) (2,3) (1,8) (1,8)
(3,4) (2,4) (2,3) (1,9)
(2,6) (2,5) (2,3)
(3,5) (2,7) (2,4)
(3,6) (2,6)
(4,5) (2,8)
(3,4)
(3,7)
(4,6)
For all subsets instead of just pairs we have
A088314, complement
A365322.
The case of nonnegative coefficients is
A365314, for all subsets
A365073.
A004526 counts partitions of length 2, shift right for strict.
A364350 counts combination-free strict partitions.
Cf.
A070880,
A088809,
A326020,
A364534,
A365043,
A365311,
A365312,
A365378,
A365379,
A365380,
A365383.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n],{2}],combp[n,#]!={}&]],{n,0,30}]
-
from itertools import count
from sympy import divisors
def A365315(n):
a = set()
for i in range(1,n+1):
for j in count(i,i):
if j >= n:
break
for d in divisors(n-j):
if d>=i:
break
a.add((d,i))
return len(a) # Chai Wah Wu, Sep 13 2023
A365042
Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others.
Original entry on oeis.org
0, 0, 1, 2, 4, 5, 9, 11, 17, 21, 29, 36, 50, 60, 78, 95, 123, 147, 185, 221, 274, 325, 399, 472, 574, 672, 810, 945, 1131, 1316, 1557, 1812, 2137, 2462, 2892, 3322, 3881, 4460, 5176, 5916, 6846, 7817, 8993, 10250, 11765, 13333, 15280, 17308, 19731, 22306
Offset: 0
The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(7) = 11 subsets:
. . {1,2} {1,3} {1,4} {1,5} {1,6} {1,7}
{1,2,3} {2,4} {1,2,5} {2,6} {1,2,7}
{1,2,4} {1,3,5} {3,6} {1,3,7}
{1,3,4} {1,4,5} {1,2,6} {1,4,7}
{2,3,5} {1,3,6} {1,5,7}
{1,4,6} {1,6,7}
{1,5,6} {2,3,7}
{2,4,6} {2,5,7}
{1,2,3,6} {3,4,7}
{1,2,3,7}
{1,2,4,7}
Without re-usable parts we have
A365069, first differences of
A364534.
A085489 and
A364755 count subsets with no sum of two distinct elements.
A088314 counts sets that can be linearly combined to obtain n.
A088809 and
A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement
A364839.
A364913 counts combination-full partitions.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combp[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]
A365542
Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n.
Original entry on oeis.org
0, 1, 2, 6, 10, 28, 48, 116, 224, 480, 920, 2000, 3840, 7984, 15936, 32320, 63968, 130176, 258304, 521920, 1041664, 2089472, 4171392, 8377856, 16726528, 33509632, 67004416, 134129664, 268111360, 536705024, 1072961536, 2146941952, 4293509120, 8588414976
Offset: 1
The a(2) = 1 through a(5) = 10 partitions:
{1} {1} {1} {1}
{1,2} {2} {1,2}
{1,2} {1,3}
{1,3} {1,4}
{2,3} {2,3}
{1,2,3} {1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}
For subsets of {1..n} instead of {1..n-1} we have
A365073.
The complement is counted by
A365380.
A364350 counts combination-free strict partitions.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n-1]],combs[n,#]!={}&]],{n,5}]
-
from itertools import combinations
from sympy.utilities.iterables import partitions
def A365542(n):
a = {tuple(sorted(set(p))) for p in partitions(n)}
return sum(1 for m in range(1,n) for b in combinations(range(1,n),m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 12 2023
A365323
Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using all positive coefficients to obtain n.
Original entry on oeis.org
0, 0, 1, 1, 4, 3, 9, 7, 15, 16, 29, 23, 47, 43, 74, 65, 114, 100, 174, 153, 257, 228, 368, 312, 530, 454, 736, 645, 1025, 902, 1402, 1184, 1909, 1626, 2618, 2184, 3412, 2895, 4551, 3887, 5966, 5055, 7796, 6509, 10244, 8462, 13060, 10881, 16834, 14021, 21471
Offset: 1
The partition y = (3,3,2) has distinct parts {2,3}, and we have 9 = 3*2 + 1*3, so y is not counted under a(9).
The a(3) = 1 through a(10) = 16 partitions:
(2) (3) (2) (4) (2) (3) (2) (3)
(3) (5) (3) (5) (4) (4)
(4) (3,2) (4) (6) (5) (6)
(2,2) (5) (7) (6) (7)
(6) (3,3) (7) (8)
(2,2) (4,3) (8) (9)
(3,3) (5,2) (2,2) (3,3)
(4,2) (4,2) (4,4)
(2,2,2) (4,3) (5,2)
(4,4) (5,3)
(5,3) (5,4)
(6,2) (6,3)
(2,2,2) (7,2)
(4,2,2) (3,3,3)
(2,2,2,2) (4,3,2)
(5,2,2)
For strict partitions we have
A088528, nonnegative coefficients
A365312.
For length-2 subsets we have
A365321 (we use n instead of n-1).
A364350 counts combination-free strict partitions, non-strict
A364915.
A364839 counts combination-full strict partitions, non-strict
A364913.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combp[n,Union[#]]=={}&]],{n,10}]
-
from sympy.utilities.iterables import partitions
def A365323(n):
a = {tuple(sorted(set(p))) for p in partitions(n)}
return sum(1 for k in range(1,n) for d in partitions(k) if tuple(sorted(set(d))) not in a) # Chai Wah Wu, Sep 12 2023
A365383
Triangle read by rows where T(n,k) is the number of integer partitions of n that can be linearly combined with nonnegative coefficients to obtain k.
Original entry on oeis.org
1, 2, 1, 3, 2, 2, 5, 3, 4, 3, 7, 5, 6, 6, 6, 11, 7, 9, 8, 9, 7, 15, 11, 13, 13, 14, 13, 14, 22, 15, 19, 17, 20, 17, 20, 16, 30, 22, 26, 26, 27, 26, 28, 26, 27, 42, 30, 37, 34, 39, 33, 40, 34, 39, 34, 56, 42, 50, 49, 52, 50, 54, 51, 54, 53, 53
Offset: 0
Triangle begins:
1
2 1
3 2 2
5 3 4 3
7 5 6 6 6
11 7 9 8 9 7
15 11 13 13 14 13 14
22 15 19 17 20 17 20 16
30 22 26 26 27 26 28 26 27
42 30 37 34 39 33 40 34 39 34
56 42 50 49 52 50 54 51 54 53 53
77 56 68 64 71 63 73 63 71 65 70 62
101 77 91 89 95 90 97 93 97 97 98 94 99
135 101 122 115 127 115 130 114 131 119 130 117 132 116
176 135 159 156 165 157 170 161 167 168 166 165 172 164 166
Row n = 6 counts the following partitions:
(6) (51) (51) (51) (51) (51)
(51) (411) (42) (411) (42) (411)
(42) (321) (411) (33) (411) (321)
(411) (3111) (321) (321) (321) (3111)
(33) (2211) (3111) (3111) (3111) (2211)
(321) (21111) (222) (2211) (222) (21111)
(3111) (111111) (2211) (21111) (2211) (111111)
(222) (21111) (111111) (21111)
(2211) (111111) (111111)
(21111)
(111111)
A364350 counts combination-free strict partitions, non-strict
A364915.
A364839 counts combination-full strict partitions, non-strict
A364913.
-
combu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n],combu[k,#]!={}&]],{n,0,12},{k,0,n-1}]
A088318
The number of possible values of the squarefree kernel (A007947) shared by at least two solutions x to A056239(x) = n.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 32, 40, 51, 66, 83, 103, 128, 158, 194, 237, 288, 348, 419, 500, 601, 718, 846, 1003, 1186, 1392, 1638, 1915, 2232, 2605, 3027, 3518, 4066, 4704, 5419, 6241, 7178, 8236, 9427, 10792, 12308, 14062, 15990, 18203, 20659
Offset: 1
a(7) = 2 because there are two different values, 10 and 6:
m_1 = 50, m_2 = 80, 10 = A007947(50) = A007947(80) and A056239(50) = A056239(80) = 7.
m_1 = 54, m_2 = 72, m_3 = 96, 6 = A007947(54) = A007947(72) = A007947(96) and A056239(54) = A056239(72) = A056239(96) = 7.
-
a[n_] := Count[Tally[DeleteDuplicates /@ IntegerPartitions[n]][[;; , 2]], ?(# > 1 &)]; Array[a, 50] (* _Amiram Eldar, Jun 18 2025 *)
-
a(n) = {my(v = List(), c = 0); forpart(p = n, listput(v, vecprod(apply(prime, Set(p))))); v = matreduce(Vec(v))[,2]; for(i = 1, #v, if(v[i] > 1, c++)); c;} \\ Amiram Eldar, Jun 18 2025
Name changed, a(29) corrected and (30)-a(53) added by
Amiram Eldar, Jun 18 2025
Comments