cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A079097 Mix odd numbers and squares.

Original entry on oeis.org

1, 1, 3, 4, 5, 9, 7, 16, 9, 25, 11, 36, 13, 49, 15, 64, 17, 81, 19, 100, 21, 121, 23, 144, 25, 169, 27, 196, 29, 225, 31, 256, 33, 289, 35, 324, 37, 361, 39, 400, 41, 441, 43, 484, 45, 529, 47, 576, 49, 625, 51, 676, 53, 729, 55, 784, 57, 841, 59, 900, 61, 961, 63, 1024, 65
Offset: 0

Views

Author

N. J. A. Sloane, Sep 20 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A010892.
This sequence is visible in the identity 4/Pi = 1 + 1/(3 + 4/(5 + 9/(7 + 16/(9 + 25/(11 + ...))))) (see the Wolfram Research web site).

Crossrefs

Cf. A086377.
Cf. A088538 for decimal expansion of 4/Pi.

Programs

  • Magma
    [(-1)*((1+n)*(-5-3*(-1)^n+(-1+(-1)^n)*n))/8: n in [0..70]]; // Vincenzo Librandi, Jan 28 2016
  • Maple
    f:=n->if n mod 2 = 0 then n+1 else ((n+1)/2)^2; fi;
  • Mathematica
    Riffle[2 Range@ Floor[#/2] - 1, Range[#]^2] &@66 (* or *) CoefficientList[Series[(1 + x^2) (x^2 - x - 1)/((x - 1)^3*(1 + x)^3), {x, 0, 64}], x] (* Michael De Vlieger, Jan 27 2016 *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 1, 3, 4, 5, 9}, 70] (* Vincenzo Librandi, Jan 28 2016 *)
  • PARI
    Vec((1+x^2)*(x^2-x-1)/((x-1)^3*(1+x)^3) + O(x^100)) \\ Colin Barker, Jan 27 2016
    

Formula

a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: (1+x^2)*(x^2-x-1)/((x-1)^3*(1+x)^3). - R. J. Mathar, Jan 05 2009
From Colin Barker, Jan 27 2016: (Start)
a(n) = (-1)*((1+n)*(-5-3*(-1)^n+(-1+(-1)^n)*n))/8.
a(n) = n-1 for n even.
a(n) = (n^2+2*n+1)/4 for n odd.
(End)

A132697 Decimal expansion of 7/Pi.

Original entry on oeis.org

2, 2, 2, 8, 1, 6, 9, 2, 0, 3, 2, 8, 6, 5, 3, 4, 7, 0, 0, 7, 6, 4, 3, 7, 2, 6, 8, 7, 2, 1, 5, 2, 0, 1, 0, 6, 8, 4, 8, 2, 4, 3, 5, 0, 4, 0, 3, 6, 6, 3, 9, 0, 2, 8, 2, 4, 6, 7, 3, 4, 2, 8, 1, 6, 8, 2, 4, 5, 5, 5, 1, 6, 6, 8, 7, 9, 1, 7, 1, 4, 9, 1, 2, 6, 1, 5, 9, 3, 2, 3, 8, 7, 2, 7, 5, 4, 3, 2, 0, 3, 3, 8, 5, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			2.22816920328653470076437268721520106848243504036639028246734281682455516687917....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132721 Decimal expansion of 31/Pi.

Original entry on oeis.org

9, 8, 6, 7, 6, 0, 6, 4, 7, 1, 6, 9, 7, 5, 1, 0, 8, 1, 7, 6, 7, 0, 7, 9, 3, 3, 2, 9, 0, 9, 5, 8, 9, 0, 4, 4, 6, 1, 3, 6, 4, 9, 8, 0, 3, 5, 9, 0, 8, 2, 9, 9, 8, 2, 2, 3, 5, 5, 3, 7, 5, 3, 3, 1, 6, 5, 1, 6, 0, 1, 4, 5, 3, 3, 2, 2, 0, 4, 5, 1, 7, 5, 5, 8, 7, 0, 5, 5, 7, 7, 1, 5
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			9.867606471697510817670793...
		

Crossrefs

Programs

Extensions

Terms a(32) and beyond from Andrew Howroyd, Jan 03 2020

A180310 Decimal expansion of Pi/2 - 4/Pi.

Original entry on oeis.org

2, 9, 7, 5, 5, 6, 7, 8, 2, 0, 5, 9, 7, 3, 3, 9, 3, 3, 0, 8, 0, 2, 5, 1, 5, 8, 4, 6, 5, 9, 6, 3, 6, 5, 4, 5, 8, 2, 2, 9, 0, 7, 5, 3, 3, 7, 6, 3, 9, 0, 1, 3, 2, 0, 5, 0, 6, 1, 3, 3, 5, 4, 3, 6, 8, 2, 7, 3, 3, 8, 2, 2, 0, 6, 9, 2, 9, 2, 2, 1, 8, 5, 9, 3, 1, 0, 6, 9, 9, 0, 5, 4, 1, 0, 3, 3, 8, 4, 6, 3, 4, 2, 4, 9, 1
Offset: 0

Views

Author

Eric W. Weisstein, Aug 26 2010

Keywords

Comments

Torsional rigidity constant for a half-disk shaped shaft.

Examples

			0.29755678205973393308...
		

Crossrefs

Programs

Formula

Equals A019669 - A088538.

A241017 Decimal expansion of Sierpiński's S constant, which appears in a series involving the function r(n), defined as the number of representations of the positive integer n as a sum of two squares. This S constant is the usual Sierpiński K constant divided by Pi.

Original entry on oeis.org

8, 2, 2, 8, 2, 5, 2, 4, 9, 6, 7, 8, 8, 4, 7, 0, 3, 2, 9, 9, 5, 3, 2, 8, 7, 1, 6, 2, 6, 1, 4, 6, 4, 9, 4, 9, 4, 7, 5, 6, 9, 3, 1, 1, 8, 8, 9, 4, 8, 5, 0, 2, 1, 8, 3, 9, 3, 8, 1, 5, 6, 1, 3, 0, 3, 7, 0, 9, 0, 9, 5, 6, 4, 4, 6, 4, 0, 1, 6, 6, 7, 5, 7, 2, 1, 9, 5, 3, 2, 5, 7, 3, 2, 3, 4, 4, 5, 3, 2, 4, 7, 2, 1, 4
Offset: 0

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			0.822825249678847032995328716261464949475693118894850218393815613...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's Constant, p. 123.

Crossrefs

Programs

  • Mathematica
    S = Log[4*Pi^3*Exp[2*EulerGamma]/Gamma[1/4]^4]; RealDigits[S, 10, 104] // First
  • PARI
    log(agm(sqrt(2), 1)^2/2) + 2*Euler \\ Charles R Greathouse IV, Nov 26 2024

Formula

S = gamma + beta'(1) / beta(1), where beta is Dirichlet's beta function.
S = log(Pi^2*exp(2*gamma) / (2*L^2)), where L is Gauss' lemniscate constant.
S = log(4*Pi^3*exp(2*gamma) / Gamma(1/4)^4), where gamma is Euler's constant and Gamma is Euler's Gamma function.
S = A062089 / Pi, where A062089 is Sierpiński's K constant.
S = A086058 - 1, where A086058 is the conjectured (but erroneous!) value of Masser-Gramain 'delta' constant. [updated by Vaclav Kotesovec, Apr 27 2015]
S = 2*gamma + (4/Pi)*integral_{x>0} exp(-x)*log(x)/(1-exp(-2*x)) dx.
Sum_{k=1..n} r(k)/k = Pi*(log(n) + S) + O(n^(-1/2)).
Equals 2*A001620 - A088538*A115252 [Coffey]. - R. J. Mathar, Jan 15 2021

A340533 Decimal expansion of log_2(4/Pi).

Original entry on oeis.org

3, 4, 8, 5, 0, 3, 8, 7, 0, 5, 2, 7, 6, 8, 1, 2, 0, 1, 9, 5, 6, 7, 2, 0, 7, 0, 4, 8, 9, 1, 9, 9, 2, 6, 6, 4, 9, 8, 1, 5, 2, 3, 0, 7, 3, 2, 3, 6, 9, 5, 8, 4, 7, 0, 5, 9, 3, 2, 1, 1, 4, 8, 4, 5, 1, 1, 8, 9, 7, 0, 3, 6, 4, 1, 5, 4, 5, 8, 5, 6, 1, 0, 3, 9, 7, 3, 5
Offset: 0

Views

Author

A.H.M. Smeets, Jan 10 2021

Keywords

Comments

Probability of a coefficient in the continued fraction being even, where the continued fraction coefficients satisfy the Gauss-Kuzmin distribution.

Examples

			0.348503870527681201956720704891992664981523...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[4/Pi]/Log[2], 10, 100][[1]] (* Amiram Eldar, Jan 10 2021 *)
  • PARI
    log(4/Pi)/log(2)

Formula

Equals 2 - A216582.
Equals log_2(A088538).
Equals -Sum_{k >= 1} log_2(1-1/(2*k+1)^2).
Equals 1-A340543.

A132717 Decimal expansion of 27/Pi.

Original entry on oeis.org

8, 5, 9, 4, 3, 6, 6, 9, 2, 6, 9, 6, 2, 3, 4, 8, 1, 3, 1, 5, 1, 9, 7, 2, 3, 2, 2, 2, 1, 1, 5, 7, 7, 5, 5, 4, 9, 8, 6, 0, 8, 2, 0, 8, 6, 9, 9, 8, 4, 6, 4, 8, 2, 3, 2, 3, 7, 4, 0, 3, 6, 5, 7, 9, 1, 8, 0, 4, 2, 7, 0, 7, 2, 2, 4, 8, 2, 3, 2, 8, 9, 4, 8, 6, 6, 1, 4, 5, 3, 4, 9, 3, 7, 7, 6, 6, 6, 6, 4, 1, 6, 2, 7, 9, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			8.59436692696234813151972322211577554986082086998464...
		

Crossrefs

Programs

A240946 Decimal expansion of the average distance traveled in three steps of length 1 for a random walk in the plane starting at the origin.

Original entry on oeis.org

1, 5, 7, 4, 5, 9, 7, 2, 3, 7, 5, 5, 1, 8, 9, 3, 6, 5, 7, 4, 9, 4, 6, 9, 2, 1, 8, 3, 0, 7, 6, 5, 1, 9, 6, 9, 0, 2, 2, 1, 6, 6, 6, 1, 8, 0, 7, 5, 8, 5, 1, 9, 1, 7, 0, 1, 9, 3, 6, 9, 3, 0, 9, 8, 3, 0, 1, 8, 3, 1, 1, 8, 0, 5, 9, 4, 4, 5, 4, 3, 8, 2, 1, 3, 1, 0, 8, 5, 3, 1, 3, 3, 6, 2, 2, 4, 1, 9, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Aug 04 2014

Keywords

Examples

			1.5745972375518936574946921830765...
		

Crossrefs

Cf. A088538 (two steps).

Programs

  • Mathematica
    (3*2^(1/3))/(16*Pi^4)*Gamma[1/3]^6 + (27*2^(2/3))/(4*Pi^4)*Gamma[2/3]^6 //
      RealDigits[#, 10, 100]& // First (* updated May 20 2015 *)

Formula

Integral_(0..3) x*p(x) dx, where p(x) = 2*sqrt(3)/Pi*x/(3+x^2) * 2F1(1/3, 2/3; 1; x^2*(9-x^2)^2/(3+x^2)^3), 2F1 being the hypergeometric function.
Re(3F2(-1/2, -1/2, 1/2; 1, 1; 4)).
(3*2^(1/3))/(16*Pi^4)*Gamma(1/3)^6 + (27*2^(2/3))/(4*Pi^4)*Gamma(2/3)^6.

Extensions

More digits from Jean-François Alcover, May 20 2015

A243378 Decimal expansion of a constant related to the asymptotic evaluation of Product_{p prime congruent to 3 modulo 4} (1 + 1/p).

Original entry on oeis.org

9, 8, 5, 2, 4, 7, 5, 8, 1, 0, 0, 6, 0, 9, 6, 3, 4, 3, 6, 9, 0, 5, 1, 0, 6, 0, 4, 2, 9, 8, 8, 9, 6, 8, 0, 1, 0, 8, 1, 2, 1, 6, 4, 7, 9, 1, 4, 4, 4, 0, 2, 8, 2, 4, 7, 1, 7, 2, 1, 1, 8, 8, 9, 5, 6, 5, 1, 3, 3, 9, 1, 6, 2, 8, 8, 5, 1, 9, 2, 1, 9, 1, 2, 2, 7, 6, 2, 8, 5, 2, 2, 3, 3, 8, 4, 5, 3, 4, 4, 8, 9, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			0.985247581006096343690510604298896801...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 102; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 1/Sqrt[Pi]*Exp[EulerGamma/2]*1/LandauRamanujanK // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)

Formula

Equals (1/sqrt(Pi))*exp(gamma/2)*1/K, where gamma is the Euler-Mascheroni constant (A001620) and K the Landau-Ramanujan constant (A064533).
Equals 4/(Pi*A088540) = A088538/A088540. - Amiram Eldar, Nov 16 2021

A331095 Decimal expansion of 32/Pi^3.

Original entry on oeis.org

1, 0, 3, 2, 0, 4, 9, 1, 0, 1, 8, 6, 2, 3, 8, 3, 6, 5, 3, 9, 0, 1, 5, 0, 5, 6, 8, 6, 0, 3, 4, 0, 3, 8, 0, 3, 4, 9, 7, 8, 0, 2, 6, 7, 5, 6, 7, 1, 9, 2, 9, 8, 4, 5, 5, 5, 0, 6, 6, 1, 5, 1, 1, 0, 8, 9, 8, 6, 8, 9, 9, 7, 7, 4, 2, 3, 8, 5, 5, 6, 6, 5, 2, 2, 3, 2, 1, 3, 2, 7, 3, 9, 0, 6, 0, 9, 6
Offset: 1

Views

Author

Dimitris Valianatos, Jan 08 2020

Keywords

Comments

For odd prime numbers: Product_{odd primes p} 1/(1 - 1/p^2) = Pi^2/8 = (3/4)*zeta(2) = A111003.
For odd composite numbers: Product_{odd composite numbers c} 1/(1 - 1/c^2) = (81/80) * (225/224) * (441/440) * (625/624) * (729/728) * ... = 32/Pi^3, this constant.

Examples

			1.032049101862383653901505686034038...
		

Crossrefs

Cf. A088538 (4/Pi), A111003 (Pi^2/8).

Programs

  • Mathematica
    RealDigits[32/Pi^3, 10, 100][[1]] (* Amiram Eldar, Jan 10 2020 *)
  • PARI
    p = 1.0; forstep(n = 3, 10^7, 2, if(!isprime(n), p*= (1 / (1 - 1 / n^2)))); print(p)
    
  • PARI
    32/Pi^3

Formula

Previous Showing 21-30 of 44 results. Next