cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A336696 Sum of odd divisors of 1+sigma(n).

Original entry on oeis.org

1, 1, 6, 1, 8, 14, 13, 1, 8, 20, 14, 30, 24, 31, 31, 1, 20, 6, 32, 44, 48, 38, 31, 62, 1, 44, 42, 80, 32, 74, 48, 1, 57, 72, 57, 24, 56, 62, 80, 112, 44, 98, 78, 108, 80, 74, 57, 156, 30, 48, 74, 156, 72, 133, 74, 133, 121, 112, 62, 183, 104, 98, 192, 1, 108, 180, 96, 128, 98, 180, 74, 57, 124, 144, 156, 192, 98
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[1+DivisorSigma[1,n]],OddQ]],{n,80}] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    A000593(n) = sigma(n>>valuation(n, 2));
    A336696(n) = A000593(1+sigma(n));

Formula

a(n) = A000593(1+A000203(n)) = A000593(A088580(n)) = A000593(A332459(n)).

A296092 Least number with the same prime signature as sigma(n)+1.

Original entry on oeis.org

2, 4, 2, 8, 2, 2, 4, 16, 6, 2, 2, 2, 6, 4, 4, 32, 2, 24, 6, 2, 6, 2, 4, 2, 32, 2, 2, 6, 2, 2, 6, 64, 4, 6, 4, 12, 6, 2, 6, 6, 2, 2, 12, 6, 2, 2, 4, 8, 6, 6, 2, 12, 6, 4, 2, 4, 16, 6, 2, 4, 12, 2, 30, 128, 6, 6, 6, 2, 2, 6, 2, 36, 12, 6, 8, 6, 2, 4, 16, 6, 6, 2, 6, 36, 2, 6, 4, 2, 6, 6, 2, 4, 6, 6, 4, 6, 12, 12, 2, 6, 2, 6, 30, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A088580(n)) = A046523(1+A000203(n)).

A332455 Starting from sigma(n)+1, number of tripling steps to reach 1 in '3x+1' problem, or -1 if 1 is never reached.

Original entry on oeis.org

0, 0, 1, 0, 5, 2, 6, 0, 5, 6, 2, 5, 5, 7, 7, 0, 6, 1, 1, 9, 8, 6, 7, 5, 0, 9, 40, 10, 39, 42, 8, 0, 7, 41, 7, 4, 11, 5, 10, 33, 9, 43, 4, 1, 11, 42, 7, 39, 5, 38, 42, 7, 41, 34, 42, 34, 6, 33, 5, 16, 39, 43, 12, 0, 1, 42, 3, 15, 43, 42, 42, 7, 3, 10, 39, 3, 43, 16, 6, 14, 5, 15, 1, 17, 41, 8, 34, 4, 33, 46, 2, 16, 44, 42, 34, 39
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2020

Keywords

Crossrefs

Programs

  • PARI
    A006667(n) = { my(t=0); while(n>1, if(n%2, t++; n=3*n+1, n>>=1)); (t); };
    A332455(n) = A006667(1+sigma(n));

Formula

a(n) = A006667(A088580(n)) = A006667(1+sigma(n)).
a(2^n) = 0 for all n >= 0. [Zero occurs at least also at a(25). See A202274]

A152771 a(n) = sigma(n) - 2*d(n) + 1.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 5, 8, 8, 11, 9, 17, 11, 17, 17, 22, 15, 28, 17, 31, 25, 29, 21, 45, 26, 35, 33, 45, 27, 57, 29, 52, 41, 47, 41, 74, 35, 53, 49, 75, 39, 81, 41, 73, 67, 65, 45, 105, 52, 82, 65, 87, 51, 105, 65, 105, 73, 83, 57, 145
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n] - 2 DivisorSigma[0, n] + 1, {n, 60}] (* Ivan Neretin, Sep 30 2017 *)
  • PARI
    a(n) = sigma(n) - 2*numdiv(n) + 1; \\ Michel Marcus, Sep 30 2017

Formula

a(n) = A000203(n) - 2*A000005(n) + 1 = A000203(n) - A114003(n) = A088580(n) - A062011(n). - Omar E. Pol, Sep 30 2017
G.f.: Sum_{k>=1} x^(3*k) / (1 - x^k)^2. - Ilya Gutkovskiy, Apr 24 2021

A332454 Starting from sigma(n)+1, number of halving steps to reach 1 in '3x+1' problem, or -1 if this never happens.

Original entry on oeis.org

1, 2, 4, 3, 11, 7, 13, 4, 12, 14, 7, 13, 12, 16, 16, 5, 14, 7, 6, 20, 18, 15, 16, 14, 5, 20, 69, 22, 67, 73, 18, 6, 17, 71, 17, 13, 23, 14, 22, 59, 20, 75, 12, 8, 24, 73, 17, 69, 14, 67, 73, 18, 71, 61, 73, 61, 16, 59, 14, 33, 68, 75, 26, 7, 8, 74, 11, 31, 75, 74, 73, 19, 11, 23, 69, 12, 75, 33, 16, 30, 15, 31, 8, 35, 72, 20
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A006666(A088580(n)) = A006666(1+sigma(n)).

A378998 Number of trailing 1-bits in the binary representation of sigma(n).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000203, A007814, A088580, A028982 (positions of terms > 0), A028983 (of 0's), A072461 (of 1's), A072462 (of terms > 1), A337195, A378999 [= a(n^2)].

Programs

  • Mathematica
    IntegerExponent[DivisorSigma[1, Range[100]] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
  • PARI
    A378998(n) = valuation(sigma(n)+1,2);

Formula

a(n) = A007814(A088580(n)). [the 2-adic valuation of 1+sigma(n)]
For all n in A028982, a(n) = A337195(n).

A237588 Sigma(n) - 2n + 1.

Original entry on oeis.org

0, 0, -1, 0, -3, 1, -5, 0, -4, -1, -9, 5, -11, -3, -5, 0, -15, 4, -17, 3, -9, -7, -21, 13, -18, -9, -13, 1, -27, 13, -29, 0, -17, -13, -21, 20, -35, -15, -21, 11, -39, 13, -41, -3, -11, -19, -45, 29, -40, -6, -29, -5, -51, 13, -37, 9, -33, -25, -57, 49, -59, -27, -21, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2014

Keywords

Comments

Also we can write Sigma(n) - (2n - 1).
a(n) = 2 - n iff n is prime.
a(n) = 1 iff n is a perfect number.
Conjecture: a(n) = 0 iff n is a power of 2.
The problem is not new. In fact, the following comments appeared on page 74 of Guy's book: "If Sigma(n) = 2*n - 1, n has been called almost perfect. Powers of 2 are almost perfect; it is not known if any other numbers are.". - Zhi-Wei Sun, Feb 23 2014

Examples

			-----------------------------------------------
.     The sum of       The positive
n    divisors of n     odd numbers        a(n)
-----------------------------------------------
1          1                1               0
2          3                3               0
3          4                5              -1
4          7                7               0
5          6                9              -3
6         12               11               1
7          8               13              -5
8         15               15               0
9         13               17              -4
10        18               19              -1
...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.

Crossrefs

Programs

  • Magma
    [1-2*n+SumOfDivisors(n): n in [1..100]]; // Vincenzo Librandi, Feb 25 2014
  • Mathematica
    Table[DivisorSigma[1,n]-2n+1,{n,70}] (* Harvey P. Dale, Nov 15 2014 *)
  • PARI
    vector(100, n, sigma(n)-2*n+1) \\ Colin Barker, Feb 21 2014
    

Formula

a(n) = A000203(n) - A005408(n-1) = 1 - n + A001065(n) = 1 - A033879(n) = 1 + A033880(n) = (-1)*A235796(n).
a(n) = A088580(n) - 2*n. - Omar E. Pol, Mar 23 2014

A296212 a(n) = 1 if sigma(n) + 1 is prime, 0 otherwise.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2017

Keywords

Comments

Characteristic function of A065512, numbers n such that sigma(n) + 1 is prime.

Crossrefs

Programs

Formula

a(n) = A010051(1+A000203(n)) = A010051(A088580(n)).

A334954 a(n) is 1 plus the number of divisors of n.

Original entry on oeis.org

2, 3, 3, 4, 3, 5, 3, 5, 4, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 7, 5, 5, 3, 9, 4, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 10, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 4, 7, 5, 7, 3, 9, 5, 9, 5, 5, 3, 13, 3, 5, 7, 8, 5, 9, 3, 7, 5, 9, 3, 13, 3, 5, 7, 7, 5, 9, 3, 11, 6, 5, 3, 13, 5, 5, 5, 9, 3, 13, 5, 7, 5, 5, 5, 13, 3, 7, 7, 10, 3, 9, 3, 9
Offset: 1

Views

Author

David A. Corneth and Omar E. Pol, Aug 25 2020

Keywords

Comments

a(n) is the number of times that every divisor of n occurs in the coordinates of divisors of n mentioned in A337360 (Corneth).
a(n) = 3 if and only if n is prime.
a(n) is even if and only if n is a square.
a(n) is the number of characteristic subgroups of the dihedral group D_2n. - Firdous Ahmad Mala, Dec 25 2021

Crossrefs

Partial sums give A156745.

Programs

  • Mathematica
    1 + DivisorSigma[0, Range[105]] (* Michael De Vlieger, Sep 11 2020 *)
  • PARI
    a(n) = numdiv(n) + 1

Formula

a(n) = 1 + A000005(n).
a(n) = A337360(n)/A000203(n).
a(n) = A212356(n) for n >= 3. - Ilya Gutkovskiy, Aug 27 2020

A336926 Lexicographically earliest infinite sequence such that a(i) = a(j) => A335880(1+sigma(i)) = A335880(1+sigma(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 4, 1, 3, 5, 4, 6, 7, 8, 8, 1, 5, 2, 9, 10, 5, 6, 8, 9, 1, 10, 7, 11, 12, 13, 5, 1, 14, 6, 14, 9, 5, 9, 11, 10, 10, 7, 6, 15, 10, 13, 14, 16, 6, 14, 13, 11, 6, 11, 13, 11, 11, 10, 9, 11, 10, 7, 11, 1, 15, 17, 10, 18, 7, 17, 13, 14, 13, 11, 16, 19, 7, 11, 11, 13, 9, 18, 15, 17, 20, 21, 11, 11, 10, 21, 13, 11, 21, 17, 11, 21, 11, 10, 11, 20, 5
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the function f(n) = A335880(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336694(i) = A336694(j),
a(i) = a(j) => A336695(i) = A336695(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
    Aux335880(n) = [A329697(n),A331410(n)];
    v336926 = rgs_transform(vector(up_to, n, Aux335880(1+sigma(n))));
    A336926(n) = v336926[n];
Previous Showing 11-20 of 24 results. Next