cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A123160 Triangle read by rows: T(n,k) = n!*(n+k-1)!/((n-k)!*(n-1)!*(k!)^2) for 0 <= k <= n, with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 18, 10, 1, 16, 60, 80, 35, 1, 25, 150, 350, 350, 126, 1, 36, 315, 1120, 1890, 1512, 462, 1, 49, 588, 2940, 7350, 9702, 6468, 1716, 1, 64, 1008, 6720, 23100, 44352, 48048, 27456, 6435, 1, 81, 1620, 13860, 62370, 162162, 252252, 231660, 115830, 24310
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Comments

T(n,k) is also the number of order-preserving partial transformations (of an n-element chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Aug 25 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  18,  10;
  1, 16,  60,  80,  35;
  1, 25, 150, 350, 350, 126;
  ...
		

References

  • Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965 pages 296 and 305

Crossrefs

Programs

  • Magma
    [Binomial(n,k)*Binomial(n+k-1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2022
    
  • Maple
    T:=proc(n,k) if k=0 and n=0 then 1 elif k<=n then n!*(n+k-1)!/(n-k)!/(n-1)!/(k!)^2 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, m_]= If [n==m==0, 1, n!*(n+m-1)!/((n-m)!*(n-1)!(m!)^2)];
    Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
    max = 9; s = (x+1)/(2*Sqrt[(1-x)^2-4*y])+1/2 + O[x]^(max+2) + O[y]^(max+2); T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 18 2015, after Vladimir Kruchinin *)
  • SageMath
    def A123160(n,k): return binomial(n, k)*binomial(n+k-1, k)
    flatten([[A123160(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2022

Formula

T(n, m) = n!*(n + m - 1)!/((n - m)!*(n - 1)!(m!)^2), with T(0, 0) = 1.
T(n, k) = binomial(n,k)*binomial(n+k-1,k). The row polynomials (except the first) are (1+x)*P(n,0,1,2x+1), where P(n,a,b,x) denotes the Jacobi polynomial. The columns of this triangle give the diagonals of A122899. - Peter Bala, Jan 24 2008
T(n, k) = binomial(n,k)*(n+k-1)!/((n-1)!*k!).
T(n, k)= binomial(n,k)*binomial(n+k-1,n-1). - Abdullahi Umar, Aug 25 2008
G.f.: (x+1)/(2*sqrt((1-x)^2-4*y)) + 1/2. - Vladimir Kruchinin, Jun 16 2015
From _Peter Bala, Jul 20 2015: (Start)
O.g.f. (1 + x)/( 2*sqrt((1 - x)^2 - 4*x*y) ) + 1/2 = 1 + (1 + y)*x + (1 + 4*y + 3*y^2)*x^2 + ....
For n >= 1, the n-th row polynomial R(n,y) = (1 + y)*r(n-1,y), where r(n,y) is the n-th row polynomial of A178301.
exp( Sum_{n >= 1} R(n,y)*x^n/n ) = 1 + (1 + y)*x + (1 + 3*y + 2*y^2)*x^2 + ... is the o.g.f for A088617. (End)
From G. C. Greubel, Jun 19 2022: (Start)
T(n, n) = A088218(n).
T(n, n-1) = A037965(n).
T(n, n-2) = A085373(n-2).
Sum_{k=0..n} T(n, k) = A123164(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A005773(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 26 2006 and Jul 03 2008

A154825 Reversion of x*(1-2*x)/(1-3*x).

Original entry on oeis.org

1, -1, -1, 1, 5, 3, -21, -51, 41, 391, 407, -1927, -6227, 2507, 49347, 71109, -236079, -966129, 9519, 7408497, 13685205, -32079981, -167077221, -60639939, 1209248505, 2761755543, -4457338681, -30629783831, -22124857219, 206064020315, 572040039283, -590258340811
Offset: 0

Views

Author

Paul Barry, Jan 15 2009

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1+3*x-Sqrt(1-2*x+9*x^2))/(4*x) )); // G. C. Greubel, May 24 2022
    
  • Maple
    A154825_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := -a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1)od;
    convert(a, list) end: A154825_list(28); # Peter Luschny, May 19 2011
  • Mathematica
    CoefficientList[Series[(1+3*x-Sqrt[1-2*x+9*x^2])/(4*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
  • SageMath
    [sum(binomial(n+k,n-k)*catalan_number(k)*2^k*(-3)^(n-k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, May 24 2022

Formula

G.f.: (1+3*x-sqrt(1-2*x+9*x^2))/(4*x). - corrected by Vaclav Kotesovec, Feb 08 2014
G.f.: 1/(1+x/(1-2x/(1+x/(1-2x/(1+x/(1-2x/(1+.... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*A000108(k)*2^k*(-3)^(n-k).
From Philippe Deléham, Jan 17 2009: (Start)
a(n) = Sum_{k=0..n} A131198(n,k)*(-1)^(n-k)*2^k.
a(n) = Sum_{k=0..n} A090181(n,k)*(-1)^k*2^(n-k).
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k)*(-3)^k.
a(n) = Sum_{k=0..n} A088617(n,k)*2^k*(-3)^(n-k).
a(n) = Sum_{k=0..n} A086810(n,k)*(-1)^k*3^(n-k).
a(n) = Sum_{k=0..n} A133336(n,k)*3^k*(-1)^(n-k). (End)
D-finite with recurrence (n+1)*a(n) = (2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - R. J. Mathar, Nov 15 2012
a(n) = (-3)^n*Hypergeometric2F1([-n, n+1], [2]; 2/3). - G. C. Greubel, May 24 2022

A088626 a(n) = 42*binomial(n,10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 462, 2772, 12012, 42042, 126126, 336336, 816816, 1837836, 3879876, 7759752, 14814072, 27159132, 48050772, 82372752, 137287920, 223092870, 354323970, 551170620, 841260420, 1261890630, 1862790930, 2709514080, 3887563680
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

A diagonal of A088617.

Programs

Formula

G.f.: 42*x^10/(1-x)^11. - Colin Barker, Oct 30 2012

A133306 a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*5^i*6^(n-i), a(0)=1.

Original entry on oeis.org

1, 6, 66, 906, 13926, 229326, 3956106, 70572066, 1291183806, 24095736726, 456879955026, 8776867331706, 170459895028566, 3341423256586206, 66023812564384026, 1313634856606430226, 26295597219228901806, 529199848207277494566, 10701116421278640683106, 217317899302044152030826
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2007

Keywords

Comments

Sixth column of array A103209.
The Hankel transform of this sequence is 30^C(n+1,2). - Philippe Deléham, Oct 28 2007

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-22*x+1))/(10*x))) // G. C. Greubel, Feb 10 2018
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-22*x+1])/(10*x), {x,0,50}], x] (* G. C. Greubel, Feb 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x-sqrt(x^2-22*x+1))/(10*x)) \\ G. C. Greubel, Feb 10 2018
    

Formula

G.f.: (1-z-sqrt(z^2-22*z+1))/(10*z).
a(n) = Sum_{k, 0<=k<=n} A088617(n,k)*5^k.
a(n) = Sum_{k, 0<=k<=n} A060693(n,k)*5^(n-k).
a(n) = Sum_{k, 0<=k<=n} C(n+k, 2*k) 5^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 5*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
Conjecture: (n+1)*a(n) + 11*(-2*n+1)*a(n-1) + (n-2)*a(n-2) = 0. - R. J. Mathar, May 23 2014
G.f.: 1/(1 - 6*x/(1 - 5*x/(1 - 6*x/(1 - 5*x/(1 - 6*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017
a(n) ~ 3^(1/4) * (11 + 2*sqrt(30))^(n + 1/2) / (10^(3/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 29 2021

A133307 a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*6^i*7^(n-i), a(0)=1.

Original entry on oeis.org

1, 7, 91, 1477, 26845, 522739, 10663471, 224939113, 4866571801, 107393779423, 2407939176643, 54700070934061, 1256249370578293, 29119953189833611, 680401905145643863, 16008309928027493713, 378930780842531820721, 9017843351806985482423, 215634517504141993966891
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2007

Keywords

Comments

Seventh column of array A103209.
The Hankel transform of this sequence is 42^C(n+1,2). - Philippe Deléham, Oct 28 2007

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-26*x+1))/(12*x))) // G. C. Greubel, Feb 10 2018
  • Maple
    a := n -> hypergeom([-n, n+1], [2], -6);
    seq(round(evalf(a(n),32)),n=0..16); # Peter Luschny, May 23 2014
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-26*x+1])/(12*x), {x,0,50}], x] (* G. C. Greubel, Feb 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x-sqrt(x^2-26*x+1))/(12*x)) \\ G. C. Greubel, Feb 10 2018
    

Formula

G.f.: (1-z-sqrt(z^2-26*z+1))/(12*z).
a(n) = Sum_{k=0..n} A088617(n,k)*6^k .
a(n) = Sum_{k=0..n} A060693(n,k)*6^(n-k).
a(n) = Sum_{k=0..n} C(n+k, 2k)6^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 6*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
Conjecture: (n+1)*a(n) + 13*(-2*n+1)*a(n-1) + (n-2)*a(n-2) = 0. - R. J. Mathar, May 23 2014
a(n) = hypergeom([-n, n+1], [2], -6). # Peter Luschny, May 23 2014
G.f.: 1/(1 - 7*x/(1 - 6*x/(1 - 7*x/(1 - 6*x/(1 - 7*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017
a(n) ~ 42^(1/4) * (13 + 2*sqrt(42))^(n + 1/2) / (12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 29 2021

A133308 a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*7^i*8^(n-i), a(0)=1.

Original entry on oeis.org

1, 8, 120, 2248, 47160, 1059976, 24958200, 607693640, 15175702200, 386555020552, 10004252294520, 262321706465736, 6953918939056440, 186059575955360136, 5018045415643478520, 136276936332343342152, 3723442515218861494200, 102281105054908404972040
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2007

Keywords

Comments

Eighth column of array A103209.
The Hankel transform of this sequence is 56^C(n+1,2). - Philippe Deléham, Oct 28 2007

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-30*x+1))/(14*x))) // G. C. Greubel, Feb 10 2018
  • Maple
    a := n -> hypergeom([-n, n+1], [2], -7);
    seq(round(evalf(a(n), 32)), n=0..15); # Peter Luschny, May 23 2014
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-30*x+1])/(14*x), {x,0,50}], x] (* G. C. Greubel, Feb 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x-sqrt(x^2-30*x+1))/(14*x)) \\ G. C. Greubel, Feb 10 2018
    

Formula

G.f.: (1-z-sqrt(z^2-30*z+1))/(14*z).
a(n) = Sum_{k, 0<=k<=n} A088617(n,k)*7^k.
a(n) = Sum_{k, 0<=k<=n} A060693(n,k)*7^(n-k).
a(n) = Sum_{k, 0<=k<=n} C(n+k, 2k)7^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 7*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
Conjecture: (n+1)*a(n) + 15*(-2*n+1)*a(n-1) + (n-2)*a(n-2) = 0. - R. J. Mathar, May 23 2014
a(n) = hypergeom([-n, n+1], [2], -7). - Peter Luschny, May 23 2014
G.f.: 1/(1 - 8*x/(1 - 7*x/(1 - 8*x/(1 - 7*x/(1 - 8*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017

A133309 a(n) = (1/n)*Sum_{i=0..n-1} C(n,i)*C(n,i+1)*8^i*9^(n-i), a(0)=1.

Original entry on oeis.org

1, 9, 153, 3249, 77265, 1968633, 52546473, 1450365921, 41058670113, 1185580310121, 34783088255289, 1033907690362257, 31070005849929969, 942384250116160857, 28812102048874578249, 887007207177728561601, 27473495809057571051073, 855518113376312857290441
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2007

Keywords

Comments

Ninth column of array A103209.
The Hankel transform of this sequence is 72^C(n+1,2). - Philippe Deléham, Oct 29 2007

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!( (1-x-Sqrt(x^2-34*x+1))/16 )); // G. C. Greubel, Feb 10 2018
  • Mathematica
    Rest@ CoefficientList[ Series[(1-x-Sqrt[x^2-34*x+1])/16, {x, 0, 18}], x] (* Robert G. Wilson v, Oct 19 2007 *)
    Table[-((3 I LegendreP[n, -1, 2, 17])/(2 Sqrt[2])), {n, 0, 20}] (* Vaclav Kotesovec, Aug 13 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x-sqrt(x^2-34*x+1))/16) \\ G. C. Greubel, Feb 10 2018
    

Formula

G.f.: (1-z-sqrt(z^2-34*z+1))/16.
a(n) = Sum_{k=0..n} A088617(n,k)*8^k.
a(n) = Sum_{k=0..n} A060693(n,k)*8^(n-k).
a(n) = Sum_{k=0..n} C(n+k, 2k)8^k*C(k), C(n) given by A000108.
a(0)=1, a(n) = a(n-1) + 8*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
a(n) ~ sqrt(144+102*sqrt(2))*(17+12*sqrt(2))^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: (n+1)*a(n) = 17*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Aug 13 2013
G.f.: 1/(1 - 9*x/(1 - 8*x/(1 - 9*x/(1 - 8*x/(1 - 9*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, May 10 2017

Extensions

More terms from Robert G. Wilson v, Oct 19 2007

A140662 Number of possible column states for self-avoiding polygons in a slit of width n.

Original entry on oeis.org

1, 3, 8, 20, 50, 126, 322, 834, 2187, 5797, 15510, 41834, 113633, 310571, 853466, 2356778, 6536381, 18199283, 50852018, 142547558, 400763222, 1129760414, 3192727796, 9043402500, 25669818475, 73007772801, 208023278208, 593742784828, 1697385471210, 4859761676390
Offset: 1

Views

Author

R. J. Mathar, Jul 11 2008

Keywords

Comments

Number of Dyck (n+1)-paths whose maximum ascent length is 2. - David Scambler, Aug 22 2012
Number of (n+1)-Motzkin-paths with at least one up-step (see A001006 and the Python program). - Peter Luschny, Dec 03 2024

Examples

			The 20 Motzkin-paths of length 5 with at least one up-step are: UUDDF, UUDFD, UUFDD, UDUDF, UDUFD, UDFUD, UDFFF, UFUDD, UFDUD, UFDFF, UFFDF, UFFFD, FUUDD, FUDUD, FUDFF, FUFDF, FUFFD, FFUDF, FFUFD, FFFUD.
		

Crossrefs

Cf. A001006.
Column k=2 of A203717 (shifted).

Programs

  • Maple
    a := n -> n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4)/2:
    seq(simplify(a(n)), n = 1..30);  # Peter Luschny, Dec 03 2024
  • Python
    # A generator of the Motzkin-paths with at least one up-step.
    C = str.count
    def aGen(n: int): # -> Generator[str, Any, list[str]]
        a = [""]
        for w in a:
            if len(w) == n + 1:
                if (C(w, "U") > 0 and C(w, "U") == C(w, "D")): yield w
            else:
                for j in "UDF":
                    u = w + j
                    if C(u, "U") >= C(u, "D"): a += [u]
        return a
    for n in range(1, 6):
        SAP = [w for w in aGen(n)]
        print(len(SAP), ":", SAP)  # Peter Luschny, Dec 03 2024

Formula

a(n) = Sum_{m=1..[(n+1)/2]} (n+1)!/((n+1-2m)!m!(m+1)!).
a(n) = A001006(n + 1) - 1. [Corrected by Peter Luschny, Dec 03 2024]
D-finite with recurrence (n+3)*a(n) + (-4*n-7)*a(n-1) + (2*n+3)*a(n-2) + (4*n-5)*a(n-3) + 3*(-n+2)*a(n-4) = 0. - R. J. Mathar, Nov 01 2021
From Peter Luschny, Dec 03 2024: (Start)
a(n) = (1/2)*n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4).
a(n) = n!*[x^n]((exp(x)*(-x^3 + 2*(2*x - 3)*x*BesselI(0,2*x) + (x*(5*x - 4) + 6)*BesselI(1, 2* x)))/x^3). (End)

A088625 14*C(n,8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 14, 126, 630, 2310, 6930, 18018, 42042, 90090, 180180, 340340, 612612, 1058148, 1763580, 2848860, 4476780, 6864396, 10296594, 15142050, 21871850, 31081050, 43513470, 60090030, 81940950, 110442150, 147256200, 194378184, 254186856, 329501480
Offset: 0

Views

Author

Keywords

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

A diagonal of A088617.

Formula

G.f.: 14*x^8 / (1-x)^9. [Colin Barker, Dec 19 2012]

Extensions

Revised Nov 23 2003, Jun 12 2012

A152601 a(n) = Sum_{k=0..n} C(n+k,2k)*A000108(k)*3^k*2^(n-k).

Original entry on oeis.org

1, 5, 40, 395, 4360, 51530, 637840, 8163095, 107140360, 1434252230, 19507077040, 268796321870, 3744480010960, 52647783144980, 746145741252640, 10648007952942095, 152877753577617160, 2206713692628578030
Offset: 0

Views

Author

Paul Barry, Dec 09 2008

Keywords

Comments

Hankel transform is 15^C(n+1,2).

Crossrefs

Formula

a(n) = A152600(n+1)/2.
a(n) = Sum_{k=0..n} A088617(n,k)*3^k*2^(n-k) = Sum_{k=0..n} A060693(n,k)*2^k*3^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A090181(n,k)*5^k*3^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A131198(n,k)*3^k*5^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A133336(n,k)*(-2)^k*5^(n-k) = Sum_{k=0..n} A086810(n,k)*5^k*(-2)^(n-k). - Philippe Deléham, Dec 10 2008
G.f.: 1/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-... (continued fraction). - Philippe Deléham, Nov 28 2011
Conjecture: (n+1)*a(n) +8*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
G.f.: 1/G(x), with G(x) = 1-2*x-(3*x)/G(x) (continued fraction). - Nikolaos Pantelidis, Jan 09 2023
Previous Showing 21-30 of 37 results. Next