A136060
Daughter primes of order 11.
Original entry on oeis.org
3, 7, 13, 31, 37, 43, 61, 73, 103, 163, 211, 223, 241, 271, 307, 313, 331, 367, 397, 421, 463, 523, 541, 577, 643, 727, 757, 853, 877, 883, 937, 1051, 1087, 1093, 1153, 1237, 1291, 1303, 1381, 1423, 1471, 1597, 1693, 1723, 1777, 1951, 1993, 2131, 2161, 2203
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136051,
A136052,
A136053,
A136054,
A136055,
A136056,
A136057,
A136058,
A136059.
-
n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
A136063
Mother primes of order 4.
Original entry on oeis.org
19, 37, 109, 163, 199, 271, 379, 523, 541, 631, 739, 919, 1009, 1171, 1459, 1549, 1621, 1783, 1999, 2053, 2089, 2143, 2161, 2251, 2521, 2539, 2791, 2971, 3169, 3673, 3889, 3943, 4159, 4483, 4519, 4861, 5059, 5113, 5563, 5779, 5869, 5923, 6211, 6301, 6373
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136061,
A136062,
A136064,
A136065,
A136066,
A136067,
A136068,
A136069,
A136070.
-
n = 4; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
A136064
Mother primes of order 5.
Original entry on oeis.org
23, 67, 199, 331, 397, 463, 661, 727, 859, 1123, 1783, 2113, 2179, 2311, 2971, 3037, 3433, 3631, 3697, 4027, 4093, 4159, 4357, 4621, 5347, 5479, 5743, 6007, 6271, 6337, 6733, 7393, 7591, 7789, 8053, 8317, 8647, 9043, 9109, 9439, 9967, 10099, 10627
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136061,
A136062,
A136063,
A136065,
A136066,
A136067,
A136068,
A136069,
A136070.
-
n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
A136065
Mother primes of order 6.
Original entry on oeis.org
53, 79, 131, 157, 521, 547, 599, 677, 859, 911, 937, 1249, 1301, 1327, 1951, 2029, 2237, 2341, 2549, 2731, 2887, 2939, 3121, 3251, 3329, 3407, 3511, 3797, 4057, 4759, 4967, 5591, 5981, 6007, 6761, 7229, 7307, 7411, 7489, 7879, 8009, 8191, 8581, 8737
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136061,
A136062,
A136063,
A136064,
A136066,
A136067,
A136068,
A136069,
A136070.
-
n = 6; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
A136067
Mother primes of order 8.
Original entry on oeis.org
103, 307, 613, 1021, 1123, 1327, 2143, 2347, 2551, 3061, 3571, 3877, 4591, 6427, 6733, 7753, 8263, 8467, 9181, 9283, 10303, 10711, 11731, 12037, 12343, 12547, 12853, 15607, 15913, 16831, 17137, 17341, 17851, 18973, 19891, 21013, 21727
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136061,
A136062,
A136063,
A136064,
A136065,
A136066,
A136068,
A136069,
A136070.
-
n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
A136068
Mother primes of order 9.
Original entry on oeis.org
191, 229, 419, 571, 761, 1103, 1483, 1559, 1901, 2053, 2129, 2851, 3079, 4219, 4409, 4523, 4561, 4751, 6271, 6689, 6803, 7069, 7753, 8171, 8209, 8513, 8741, 8779, 9311, 9463, 9539, 10831, 11743, 11971, 12161, 12503, 12541, 12959, 14251, 14593, 14669
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136061,
A136062,
A136063,
A136064,
A136065,
A136066,
A136067,
A136069,
A136070.
-
n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
A136070
Mother primes of order 11.
Original entry on oeis.org
47, 139, 277, 691, 829, 967, 1381, 1657, 2347, 3727, 4831, 5107, 5521, 6211, 7039, 7177, 7591, 8419, 9109, 9661, 10627, 12007, 12421, 13249, 14767, 16699, 17389, 19597, 20149, 20287, 21529, 24151, 24979, 25117, 26497, 28429, 29671, 29947
Offset: 1
Cf.
A088878,
A091180,
A136019,
A136020,
A136061,
A136062,
A136063,
A136064,
A136065,
A136066,
A136067,
A136068,
A136069.
-
n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
A259730
Primes p such that both 2*p - 3 and 3*p - 2 are prime.
Original entry on oeis.org
3, 5, 7, 11, 13, 23, 37, 43, 53, 67, 71, 113, 127, 137, 167, 181, 191, 193, 211, 251, 263, 331, 347, 373, 431, 433, 443, 461, 487, 587, 727, 751, 757, 907, 991, 1021, 1091, 1103, 1171, 1187, 1213, 1231, 1297, 1367, 1453, 1483, 1597, 1637, 1663, 1667, 1733
Offset: 1
-
import Data.List.Ordered (isect)
a259730 n = a259730_list !! (n-1)
a259730_list = a063908_list `isect` a088878_list
-
Select[Prime@ Range@ 270, Times @@ Boole@ Map[PrimeQ, {2 # - 3, 3 # - 2}] > 0 &] (* Michael De Vlieger, Jul 22 2017 *)
Select[Prime[Range[300]],AllTrue[{2#-3,3#-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 08 2020 *)
-
lista(nn) = forprime(p=3, nn, if(isprime(2*p-3) && isprime(3*p-2), print1(p, ", "))); \\ Altug Alkan, Jul 22 2017
A172287
Primes p such that exactly one of 2p-3 and 3p-2 is prime.
Original entry on oeis.org
17, 31, 41, 47, 61, 83, 97, 101, 103, 107, 157, 163, 223, 233, 241, 257, 271, 277, 283, 293, 307, 311, 313, 317, 337, 401, 421, 457, 467, 491, 521, 523, 541, 547, 557, 563, 577, 593, 601, 613, 617, 631, 641, 643, 647, 653, 661, 673, 677, 701, 743, 761, 773
Offset: 1
a(1)=17 because 2*17-3=31 is prime and 3*17-2=49 is nonprime.
19 is not a term because neither 2*19-3=35 nor 3*19-2=55 is prime;
23 is not a term because both 2*23-3=43 and 3*23-2=67 are prime.
-
a172287 n = a172287_list !! (n-1)
a172287_list = filter
(\p -> a010051' (2 * p - 3) + a010051' (3 * p - 2) == 1) a000040_list
-- Reinhard Zumkeller, Jul 02 2015
-
A172287:=n->`if`(isprime(n) and (isprime(2*n-3) xor isprime(3*n-2)), n, NULL): seq(A172287(n), n=1..1000); # Wesley Ivan Hurt, Jun 23 2015
-
Select[Prime@ Range@ 150, Xor[PrimeQ[2 # - 3], PrimeQ[3 # - 2]] &] (* Michael De Vlieger, Jul 01 2015 *)
A153184
Numbers n such that 3*n-2 is not prime.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 94, 96, 97, 98, 99, 100
Offset: 1
Distribution of the odd terms > a(1) in the following triangular array:
*;
*,9;
*,*,17;
*,*,*,*;
*,19,*,*,41;
*,*,31,*,*,57;
*,*,*,*,*,*,*;
*,29,*,*,63,*,*,97;
*,*,45,*,*,83,*,*,121;
*,*, *,*,*,*, *,*, *, *;
*,39,*,*,85,*,*,131,*,*,177;
*,*,59,*,*,109,*,*,159,*,*,209; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h + 3)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
-
[n: n in [0..120] | not IsPrime(3*n - 2)]; // Vincenzo Librandi, Jan 12 2013
-
lst={};Do[If[ !PrimeQ[3*n-2],AppendTo[lst,n]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
Select[Range[0, 100], !PrimeQ[3 # - 2] &] (* Vincenzo Librandi, Jan 12 2013 *)
-
is(n)=!isprime(3*n-2) \\ Charles R Greathouse IV, Oct 26 2015
Comments