cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A126331 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 5*T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 4, 1, 17, 9, 1, 77, 63, 14, 1, 371, 406, 134, 19, 1, 1890, 2535, 1095, 230, 24, 1, 10095, 15660, 8240, 2269, 351, 29, 1, 56040, 96635, 59129, 19936, 4053, 497, 34, 1, 320795, 598344, 412216, 162862, 40698, 6572, 668, 39, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 odd integers). Example: 7^3 = 343 = (77, 63, 14, 1) dot (1, 3, 5, 7) = (77 + 189 + 70 + 7) = 243. - Gary W. Adamson, Jun 15 2011

Examples

			Triangle begins:
      1;
      4,     1;
     17,     9,    1;
     77,    63,   14,    1;
    371,   406,  134,   19,   1;
   1890,  2535, 1095,  230,  24,  1;
  10095, 15660, 8240, 2269, 351, 29, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 5, 1
  0, 1, 5, 1
  0, 0, 1, 5, 1
  0, 0, 0, 1, 5, 1,
  0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1 (End)
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A098409(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A104455(m+n).
Sum_{k=0..n} T(n,k)*(2*k+1) = 7^n. - Philippe Deléham, Mar 26 2007

A126791 Binomial matrix applied to A111418.

Original entry on oeis.org

1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
From R. J. Mathar, Mar 12 2013: (Start)
The matrix inverse starts
1;
-4, 1;
11, -7, 1;
-29, 31, -10, 1;
76, -115, 60, -13, 1;
-199, 390, -285, 98, -16, 1;
521, -1254, 1185, -566, 145, -19, 1;
-1364, 3893, -4524, 2785, -985, 201, -22, 1; ... (End)

Examples

			Triangle begins:
      1;
      4,     1;
     17,     7,     1;
     75,    39,    10,    1;
    339,   202,    70,   13,    1;
   1558,  1015,   425,  110,   16,   1;
   7247,  5028,  2400,  771,  159,  19,  1;
  34016, 24731, 12999, 4872, 1267, 217, 22, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 3, 1
  0, 1, 3, 1
  0, 0, 1, 3, 1
  0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
		

Programs

  • Maple
    A126791 := proc(n,k)
        if n=0 and k = 0 then
            1 ;
        elif k <0 or k>n then
            0;
        elif k= 0 then
            4*procname(n-1,0)+procname(n-1,1) ;
        else
            procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n,k),k=1..n),n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1).
Sum_{k=0..n} T(n,k) = 5^n = A000351(n).
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x )*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A126953 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 3, 1, 10, 3, 1, 33, 11, 3, 1, 110, 36, 12, 3, 1, 366, 122, 39, 13, 3, 1, 1220, 405, 135, 42, 14, 3, 1, 4065, 1355, 447, 149, 45, 15, 3, 1, 13550, 4512, 1504, 492, 164, 48, 16, 3, 1, 45162, 15054, 5004, 1668, 540, 180, 51, 17, 3, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (2/(1-6x+sqrt(1-4*x^2)),x*c(x^2)) where c(x)= g.f. of the Catalan numbers A000108. - Philippe Deléham, Jun 01 2013

Examples

			Triangle begins:
     1;
     3,    1;
    10,    3,   1;
    33,   11,   3,   1;
   110,   36,  12,   3,  1;
   366,  122,  39,  13,  3,  1;
  1220,  405, 135,  42, 14,  3, 1;
  4065, 1355, 447, 149, 45, 15, 3, 1;
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A127359(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A126931(m+n).
Sum_{k=0..n} T(n,k)*(-2*k+1) = 2^n. - Philippe Deléham, Mar 25 2007

A187306 Alternating sum of Motzkin numbers A001006.

Original entry on oeis.org

1, 0, 2, 2, 7, 14, 37, 90, 233, 602, 1586, 4212, 11299, 30536, 83098, 227474, 625993, 1730786, 4805596, 13393688, 37458331, 105089228, 295673995, 834086420, 2358641377, 6684761124, 18985057352, 54022715450, 154000562759, 439742222070, 1257643249141
Offset: 0

Views

Author

Paul Barry, Mar 08 2011

Keywords

Comments

Diagonal sums of A089942.
Hankel transform is A187307.
Also gives the number of simple permutations of each length that avoid the pattern 321 (i.e., are the union of two increasing sequences, and in one line notation contain no nontrivial block of values which form an interval). There are 2 such permutations of length 4, 2 of length 5, etc. - Michael Albert, Jun 20 2012
Convolution of A005043 with itself. - Philippe Deléham, Jan 28 2014
From Gus Wiseman, Nov 15 2022: (Start)
Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 2 vertices. This would imply a(n) = A284778(n-1) + A005043(n). For example, the a(0) = 1 through a(5) = 14 trees are:
(o) . (ooo) (oooo) (ooooo) (oooooo)
((oo)) ((ooo)) ((oo)oo) ((oo)ooo)
((oooo)) ((ooo)oo)
(o(oo)o) ((ooooo))
(oo(oo)) (o(oo)oo)
(((oo)o)) (o(ooo)o)
((o(oo))) (oo(oo)o)
(oo(ooo))
(ooo(oo))
(((oo)oo))
(((ooo)o))
((o(oo)o))
((o(ooo)))
((oo(oo)))
(End)

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*(1-hypergeom([1/2,-n-1],[2],4));
    seq(round(evalf(a(n),99)),n=0..30); # Peter Luschny, Sep 25 2014
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2])/(2x^2(1+x)), {x,0,30}], x] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-2*x-3*x^2))/(2*x^2*(1+x))) /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    Vec(serreverse(x*(1-x)/(1-x+x^2) + O(x^30))^2) \\ Andrew Howroyd, Apr 28 2018
    
  • Sage
    def A187306():
        a, b, n = 1, 0, 1
        yield a
        while True:
            n += 1
            a, b = b, (2*b+3*a)*(n-1)/(n+1)
            yield b - (-1)^n
    A187306_list = A187306()
    [next(A187306_list) for i in range(20)] # Peter Luschny, Sep 25 2014

Formula

G.f.: (1-x-sqrt(1-2*x-3*x^2))/(2*x^2*(1+x)).
a(n) = sum(k=0..n, A001006(k)*(-1)^(n-k)).
D-finite with recurrence -(n+2)*a(n) +(n-1)*a(n-1) +(5*n-2)*a(n-2) +3*(n-1)a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) = (2*sum(j=0..n, C(2*j+1,j+1)*(-1)^(n-j)*C(n+2,j+2)))/(n+2). - Vladimir Kruchinin, Feb 06 2013
a(n) ~ 3^(n+5/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013
a(n) = (-1)^n*(1-hypergeom([1/2,-n-1],[2],4)). - Peter Luschny, Sep 25 2014
a(n) = A005043(n+1) + (-1)^n. - Peter Luschny, Sep 25 2014
G.f.: (1/(1 - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...))))))^2, a continued fraction. - Ilya Gutkovskiy, Sep 23 2017

A112657 A Motzkin transform of Jacobsthal numbers.

Original entry on oeis.org

1, 2, 7, 23, 79, 272, 943, 3278, 11419, 39830, 139057, 485795, 1697905, 5936348, 20760271, 72615143, 254028355, 888758030, 3109714117, 10881403229, 38077702909, 133251869648, 466325356273, 1631981113112, 5711490384901
Offset: 0

Views

Author

Paul Barry, Jan 11 2006

Keywords

Comments

Binomial transform of A100098.
Inverse binomial transform of A007854. The Hankel transform of this sequence is 3^n (see A000244). - Philippe Deléham, Nov 25 2007

Crossrefs

Formula

a(n) = Sum_{k=0..n} A026300(n, k)*(2^(k+1) + (-1)^k)/3, where A026300 is the Motzkin triangle; a(n) = Sum_{k=0..n} ((k+1)/(n+1))*Sum_{j=0..n+1} C(n+1, j)*C(j, 2j-n+k)*(2^(k+1) + (-1)^k)/3.
a(n) = Sum_{k=0..n} A089942(n,k)*2^k = Sum_{k=0..n} A071947(n,k)*2^(n-k). - Philippe Deléham, Mar 31 2007

A071947 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 3, 6, 6, 3, 1, 4, 10, 15, 15, 6, 1, 5, 15, 29, 40, 36, 15, 1, 6, 21, 49, 84, 105, 91, 36, 1, 7, 28, 76, 154, 238, 280, 232, 91, 1, 8, 36, 111, 258, 468, 672, 750, 603, 232, 1, 9, 45, 155, 405, 837, 1398, 1890, 2025, 1585, 603, 1, 10, 55, 209, 605
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle begins
  1;
  1,  0;
  1,  1,  1;
  1,  2,  3,  1;
  1,  3,  6,  6,  3;
  1,  4, 10, 15, 15,  6;
		

Crossrefs

Row sums give A002426 (central trinomial coefficients). Reversal of A089942.
Cf. A027907.

Programs

  • Maple
    A071947_row := proc(n) local G, k; G := expand((1+x+x^2)^n):
    seq(coeff(G,x,k) - coeff(G,x,k-1), k=0..n) end:
    seq(print(A071947_row(n)), n=0..11); # Peter Luschny, Oct 01 2014
  • Mathematica
    A027907[n_, k_] := Sum[Binomial[n, j]*Binomial[j, k - j], {j, 0, n}]; A005043[n_] := Sum[(-1)^k*Binomial[n, k]*Binomial[k, Floor[k/2]], {k, 0, n}]; T[n_, k_] := A027907[n, k] - A027907[n, k - 1]; T[n_, n_] := A005043[n]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 02 2017 *)

Formula

G.f.: t*(1+t*z-q)/[(1+t*z)*(2*t^2*z +t*z - 1 + q)], where q = sqrt(1 -2*t*z -3*t^2*z^2).
Sum_{k, 0<=k<=n} T(n,k)*2^(n-k) = A112657(n). - Philippe Deléham, Apr 01 2007
T(n,k) = A027907(n,k) - A027907(n,k-1). T(n,n) = A005043(n). # Peter Luschny, Oct 01 2014

Extensions

Edited by Emeric Deutsch, Mar 04 2004

A109195 Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k returns to the x-axis from above (i.e., d steps hitting the x-axis).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 9, 9, 1, 21, 25, 5, 51, 69, 20, 1, 127, 189, 70, 7, 323, 518, 230, 35, 1, 835, 1422, 726, 147, 9, 2188, 3915, 2235, 560, 54, 1, 5798, 10813, 6765, 2002, 264, 11, 15511, 29964, 20240, 6853, 1143, 77, 1, 41835, 83304, 60060, 22737, 4563, 429, 13
Offset: 0

Views

Author

Emeric Deutsch, Jun 22 2005

Keywords

Comments

A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).
Row n contains 1 + floor(n/2) terms. Row sums yield the central trinomial coefficients (A002426).
Column k is the sum of columns 2k and 2k+1 of A089942. - Philippe Deléham, Nov 11 2008

Examples

			T(3,1)=3 because we have hud, udh and uhd, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
   1;
   1;
   2,  1;
   4,  3;
   9,  9,  1;
  21, 25,  5;
  51, 69, 20,  1;
		

Crossrefs

Programs

  • Maple
    M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-z-(1+t)*z^2*M): Gser:=simplify(series(G,z=0,17)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 14 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od; # yields sequence in triangular form

Formula

T(n,0) = A001006(n) (the Motzkin numbers).
Sum_{k=0..floor(n/2)} k*T(n,k) = A109196(n).
G.f.: 1/(1 - z - (1+t)z^2*M), where M = 1 + zM + z^2*M^2 = (1 - z - sqrt(1 - 2z - 3z^2))/(2z^2) is the g.f. for the Motzkin numbers (A001006).
T(n,k) = A089942(n,2*k) + A089942(n,2*k+1). - Philippe Deléham, Nov 11 2008

A171368 Another version of A126216.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0, 9, 0, 1, 0, 0, 0, 21, 0, 14, 0, 1, 0, 0, 14, 0, 56, 0, 20, 0, 1, 0, 0, 0, 84, 0, 120, 0, 27, 0, 1, 0, 0, 42, 0, 300, 0, 225, 0, 35, 0, 1, 0, 0, 0, 330, 0, 825, 0, 385, 0, 44, 0, 1, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2009

Keywords

Comments

Expansion of the first column of the triangle T_(0,x), T_(x,y) defined in A039599; T_(0,0)= A053121, T_(0,1)= A089942, T_(0,2)= A126093, T_(0,3)= A126970.
T(n,k) is the number of Riordan paths of length n with k horizontal steps. A Riordan path is a Motzkin path with no horizontal steps on the x-axis. - Emanuele Munarini, Oct 14 2023

Examples

			Triangle begins:
  1 ;
  0,0 ;
  1,0,0 ;
  0,1,0,0 ;
  2,0,1,0,0 ;
  0,5,0,1,0,0 ;
  5,0,9,0,1,0,0 ;
  ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A099323(n+1), A126120(n), A005043(n), A000957(n+1), A117641(n) for x = -1, 0, 1, 2, 3 respectively.

A128973 Triangle formed by reading A038622 mod 2 .

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 28 2007

Keywords

Comments

Also triangle formed by reading triangles A089942, A124733, A126331, A126791, A126970 modulo 2 .

Examples

			Triangle begins:
1;
0, 1;
1, 1, 1;
1, 1, 0, 1;
1, 0, 0, 1, 1;
0, 1, 1, 0, 0, 1;
1, 0, 0, 1, 1, 1, 1;
0, 1, 1, 0, 1, 1, 0, 1;
1, 0, 0, 0, 0, 0, 0, 1, 1;
		

Formula

T(n,0)=A035263(n). Sum_{k, 0<=k<=n}T(n,k)*(-1)^k = (-1)^n .

A301475 Triangular array of polynomials related to the Motzkin triangle and to rooted polyominoes, coefficients in ascending order, read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 4, 5, 3, 1, 5, 3, 1, 3, 1, 1, 9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1, 21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1, 51, 76, 69, 44, 20, 6, 1, 76, 69, 44, 20, 6, 1, 69, 44, 20, 6, 1, 44, 20, 6, 1, 20, 6, 1, 6, 1, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2018

Keywords

Comments

Evaluating this triangle of polynomials at different values of x leads to interesting integer triangles. For instance at x = 0 it gives the Motzkin triangle A064189 (A026300), at x = 1 it counts rooted polyominoes A038622; at x = 2 it gives A126954 and at x =-1 gives A089942; x = 1/2 and scaling gives A301477.

Examples

			Triangle of polynomials starts:
                                    1
                                 1 + x, 1
                          2 + 2 x + x^2, 2 + x, 1
               4 + 5 x + 3 x^2  + x^3, 5 + 3 x^2 + x, 3 + x, 1
9 + 12 x + 9 x^2  + 4 x^3  + x^4, 12 + 9 x + 4 x^2 + x^3, 9 + 4 x + x^2, 4 + x, 1
.
Triangle of coefficients starts:
                               1
                            1, 1, 1
                        2, 2, 1, 2, 1, 1
                  4, 5, 3, 1, 5, 3, 1, 3, 1, 1
         9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1
21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1
		

Crossrefs

Cf. A064189 (A026300) (x=0), A038622 (x=1), A126954 (x=2), A089942 (x=-1), A301477 (x=1/2, scaled).
Cf. A000244 (row sums), A000217 (row length).

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
    T := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2], [-k+n+2], 4);
    P := (n,m) -> add(simplify(T(n,k)*x^(n-k-m)), k=0..n-m);
    for n from 0 to 5 do seq(sort(P(n,j),x,ascending), j=0..n) od;
    for n from 0 to 5 do seq(CoeffList(P(n,j)), j=0..n) od;

Formula

P(n,k) = Sum_{j=0..n-k}binomial(n,j)*hypergeom([-j/2,1/2-j/2],[n-j+2],4)*x^(n-j-k).
T(n,k) is the list of the coefficients of P(n,k) in ascending order.
Row sums are powers of 3, row lengths are the triangular numbers.
Previous Showing 21-30 of 32 results. Next