cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A098212 Expansion of (5-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

5, 25, 149, 865, 5045, 29401, 171365, 998785, 5821349, 33929305, 197754485, 1152597601, 6717831125, 39154389145, 228208503749, 1330096633345, 7752371296325, 45184131144601, 263352415571285, 1534930362283105, 8946229758127349, 52142448186480985
Offset: 0

Views

Author

Creighton Dement, Oct 25 2004

Keywords

Comments

Old name was: Relates the squares of Pell numbers with the squares of the numerators of continued fraction convergents to sqrt(2).
Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[(j' + k' + 'ii')*('j + 'k + 'ii')] - Creighton Dement, Aug 16 2005

Crossrefs

Programs

  • Magma
    I:=[5,25,149]; [n le 3 select I[n] else 5*Self(n-1)+5*Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 26 2015
    
  • Mathematica
    a[0]= 5; a[1]= 25; a[2]= 149; a[n_]:= a[n]= 5 a[n-1] + 5 a[n-2] - a[n-3]; Table[ a[n], {n,0,40}] (* Robert G. Wilson v, Nov 05 2004 *)
    CoefficientList[Series[(5-x^2)/((1+x)(1-6x+x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{5,5,-1},{5,25,149},40] (* Harvey P. Dale, Jun 09 2011 *)
  • PARI
    Vec((5-x^2)/((1+x)*(1-6*x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def Pell(n): return lucas_number1(n,2,-1)
    [4*Pell(n+1)^2 +(Pell(n+1) +Pell(n))^2  for n in (0..40)] # G. C. Greubel, Aug 20 2022

Formula

G.f.: (5-x^2)/((1+x)*(1-6*x+x^2)).
a(n) = 4*A079291(n+1) + A090390(n+1) = 4(A000129(n+1))^2 + (A001333(n+1))^2.
a(n) + a(n+1) = A075848(n+2) - A075848(n+1).
a(n) = A001541(n+1) + 2*A079291(n+1). - Creighton Dement, Oct 26 2004
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), a(0) = 5, a(1) = 25, a(2) = 149. - Robert G. Wilson v, Nov 05 2004
2*a(n) = (-1)^n + 3*A001541(n+1). - R. J. Mathar, Sep 11 2019

A114620 2*A084158 (twice Pell triangles).

Original entry on oeis.org

0, 2, 10, 60, 348, 2030, 11830, 68952, 401880, 2342330, 13652098, 79570260, 463769460, 2703046502, 15754509550, 91824010800, 535189555248, 3119313320690, 18180690368890, 105964828892652, 617608282987020
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Comments

Cross-referenced sequences A116484, A001109, A108475, A090390 are also generated by A*B given in the following FAMP code.
Floretion Algebra Multiplication Program, FAMP Code: 1jesleftseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'
Related to the reciprocals of the differences between successive convergents of the continued fraction of sqrt(2) (i.e., 1, 2, -10, 60, -348, 2030, -11830, 68952, ...). 1/1 + 1/2 - 1/10 + 1/60 - 1/348 + 1/2030 + ... = sqrt(2). 2, 10, 60, ... are products of the denominators of two successive convergents of sqrt(2) (e.g., 11830 = 70*169, cf. A000129 (Pell numbers)). - Gerald McGarvey, Feb 28 2006
a(n) is half of the even leg (b(n)) of the ordered Pythagorean triple (x(n), y(n)=x(n)+1, z(n)). In fact b(n) = x(n) + (1-(-1)^n)/2: x(0)=0, b(0)=0, a(0)=0; x(1)=3, b(1)=4, a(1)=2. - George F. Johnson, Aug 13 2012
Given a square shape composed of A001110(n+1) elements, thinking of it graphically as a sum of layers, each layer having an odd number of elements (all layers together being a sum of consecutive odd numbers), a(n) is the number of last layers that we have to subtract from the square to get a square of squares that is made of A002965(2*(n+1))^4 elements. - Daniel Poveda Parrilla, Jul 17 2016
Also numbers m such that 8*m^2 - 4*m + 1 or 8*m^2 + 4*m + 1 is a perfect square (square roots are then A001653). - Lamine Ngom, Jul 25 2023

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[n, 2] Fibonacci[n + 1, 2], {n, 0, 20}] (* or *)
    LinearRecurrence[{5, 5, -1}, {0, 2, 10}, 21] (* or *)
    CoefficientList[Series[2 x/((x + 1) (x^2 - 6 x + 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jul 17 2016 *)

Formula

G.f.: 2*x/((x+1)*(x^2-6*x+1)).
From George F. Johnson, Aug 13 2012: (Start)
a(n) = ((sqrt(2) + 1)^(2*n+1) - (sqrt(2) - 1)^(2*n+1) - 2*(-1)^n)/8. - corrected by Ilya Gutkovskiy, Jul 18 2016
4*a(n)*(2*a(n) + (-1)^n) + 1 = A000129(2*n+1)^2 is a perfect square.
For n >= 0, a(n+1) = 3*a(n) + (-1)^n + sqrt(4*a(n)*(2*a(n) + (-1)^n) + 1).
For n > 0, a(n-1) = 3*a(n) + (-1)^n - sqrt(4*a(n)*(2*a(n) + (-1)^n) + 1).
a(n+1) = 6*a(n) - a(n-1) + 2*(-1)^n.
a(n+1) = 5*a(n) + 5*a(n-1) - a(n-2).
For n > 0, a(n+1)*a(n-1) = a(n)*(a(n) + 2*(-1)^n).
a(n) = A046729(n)/2. (End)
a(n) = A000129(n)*A000129(n+1). - Philippe Deléham, Apr 10 2013
a(n) = A002965(2*(n+1))*(A002965(2*(n+1)+1) - A002965(2*(n+1))). - Daniel Poveda Parrilla, Jul 17 2016

A105058 Expansion of g.f. (1+8*x-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

1, 13, 69, 409, 2377, 13861, 80781, 470833, 2744209, 15994429, 93222357, 543339721, 3166815961, 18457556053, 107578520349, 627013566049, 3654502875937, 21300003689581, 124145519261541, 723573111879673
Offset: 0

Views

Author

Creighton Dement, Apr 04 2005

Keywords

Comments

A floretion-generated sequence relating the squares of the numerators of continued fraction convergents to sqrt(2) to the squares of the denominators of continued fraction convergents to sqrt(2) (Pell numbers).
Floretion Algebra Multiplication Program, FAMP Code:
1dia[J]tesseq[ - .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e ]. Identity used: dia[I]tes + dia[J]tes + dia[K]tes = jes + fam + 3tes.

Crossrefs

Programs

  • Magma
    [Evaluate(DicksonSecond(2*n+1, -1), 2) -(-1)^n: n in [0..30]]; // G. C. Greubel, Aug 21 2022
    
  • Mathematica
    CoefficientList[ Series[(1+8x-x^2)/((1+x)(1-6x+x^2)), {x,0,30}], x] (* Robert G. Wilson v, Apr 06 2005 *)
    LinearRecurrence[{5,5,-1}, {1,13,69}, 30] (* Harvey P. Dale, Jun 03 2017 *)
  • SageMath
    [lucas_number1(2*n+2,2,-1) -(-1)^n for n in (0..30)] # G. C. Greubel, Aug 21 2022

Formula

a(n) = 2 * A001109(n+1) - (-1)^n.
G.f.: G(0)/(1-3*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
From G. C. Greubel, Aug 21 2022: (Start)
a(n) = A000129(2*n+2) - (-1)^n.
E.g.f.: exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (3/sqrt(2))*sinh(2*sqrt(2)*x)) - exp(-x). (End)

A111587 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4), a(0) = 1, a(1) = 4, a(2) = 9, a(3) = 20.

Original entry on oeis.org

1, 4, 9, 20, 49, 120, 289, 696, 1681, 4060, 9801, 23660, 57121, 137904, 332929, 803760, 1940449, 4684660, 11309769, 27304196, 65918161, 159140520, 384199201, 927538920, 2239277041, 5406093004, 13051463049, 31509019100, 76069501249
Offset: 0

Views

Author

Creighton Dement, Aug 08 2005

Keywords

Comments

Let (b(n)) be the p-INVERT of (1,2,2,2,2,2,...) using p(S) = 1 - S^2; then
b(0) = 0 and b(n) = a(n-1) for n >= 1; see A292400. - Clark Kimberling, Sep 30 2017
Floretion Algebra Multiplication Program, FAMP Code: 2kbasekseq[J+G] with J = + j' + k' + 'ii' and G = + .5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • Magma
    I:=[1,4,9,20]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-3)+Self(n-4): n in [1..35]]; // Vincenzo Librandi, Oct 01 2017
  • Mathematica
    LinearRecurrence[{2,0,2,1},{1,4,9,20},30] (* Harvey P. Dale, Jul 26 2011 *)
    CoefficientList[Series[(x + 1)^2 / ((x^2 + 1) (1 - 2 x - x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 01 2017 *)

Formula

a(2n) = A090390(n+1), a(2n+1) = A046729(n+1);
G.f.: (x+1)^2/((x^2+1)*(1-2*x-x^2)). [sign flipped by R. J. Mathar, Nov 10 2009]
a(n) = A057077(n+1)/2 - A001333(n+2)/2. - R. J. Mathar, Nov 10 2009

A123219 Expansion of -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)).

Original entry on oeis.org

1, 1, 81, 2401, 83521, 2825761, 96059601, 3262808641, 110841719041, 3765342321601, 127910874833361, 4345203949621921, 147609026049038401, 5014361666349715681, 170340687719412376401, 5786569020271612560001
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 05 2006

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)))); // G. C. Greubel, Oct 12 2018
  • Maple
    seq(coeff(series(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)),x,n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 13 2018
  • Mathematica
    LinearRecurrence[{29,174,-174,-29,1},{1,1,81,2401,83521},20] (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    x='x+O('x^30); Vec(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1))) \\ G. C. Greubel, Oct 12 2018
    

Formula

G.f.: -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Jan 04 2013

Extensions

New name from Colin Barker, Jan 04 2013
Edited by Joerg Arndt, Oct 13 2018

A184327 a(1)=1, a(2)=17; thereafter a(n) = 6*a(n-1)-a(n-2)+c, where c=-4 if n is odd, c=12 if n is even.

Original entry on oeis.org

1, 17, 97, 577, 3361, 19601, 114241, 665857, 3880897, 22619537, 131836321, 768398401, 4478554081, 26102926097, 152139002497, 886731088897, 5168247530881, 30122754096401, 175568277047521, 1023286908188737, 5964153172084897, 34761632124320657
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2012

Keywords

Programs

  • Magma
    /* By definition: */ a:=[1,17]; c:=func; [n le 2 select a[n] else 6*Self(n-1)-Self(n-2)+c(n): n in [1..22]]; // Bruno Berselli, Dec 26 2012
  • Mathematica
    CoefficientList[Series[(1 + 11 x - 5 x^2 + x^3)/((1 - x) (1 + x) (1 - 6 x + x^2)), {x, 0, 24}], x] (* Bruno Berselli, Dec 26 2012 *)

Formula

From Bruno Berselli, Dec 26 2012: (Start)
G.f.: x*(1+11*x-5*x^2+x^3)/((1-x)*(1+x)*(1-6*x+x^2)).
a(n) = a(-n) = 6*a(n-1)-6*a(n-3)+a(n-4).
a(n) = ((1+sqrt(2))^(2n)+(1-sqrt(2))^(2n))/2+(-1)^n-1.
a(n) = 2*A090390(n)-1. (End)

Extensions

Edited from Bruno Berselli, Dec 26 2012
Previous Showing 11-16 of 16 results.