cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A119591 Least k such that 2*n^k - 1 is prime.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Pierre CAMI, Jun 01 2006

Keywords

Comments

From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)

Crossrefs

Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).

Programs

  • Mathematica
    f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
  • PARI
    a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015

Formula

From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)

Extensions

Corrected and extended by Ray Chandler, Jun 08 2006

A120376 Primes of the form 2*5^k - 1.

Original entry on oeis.org

1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
Offset: 1

Views

Author

Walter Kehowski, Jun 28 2006

Keywords

Comments

See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
The next term has 125 digits. - Harvey P. Dale, Jan 26 2019

Examples

			a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), this sequence (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.

Programs

  • Maple
    for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
  • Mathematica
    Select[2*5^Range[100]-1,PrimeQ] (* Harvey P. Dale, Jan 26 2019 *)
  • PARI
    for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018

Formula

a(n) = 2*5^A120375(n) - 1 = 2*5^(2*A002958(n)) - 1. - Jianing Song, Sep 22 2018

A138831 n-th perfect number minus 1, written in base 2.

Original entry on oeis.org

101, 11011, 111101111, 1111110111111, 1111111111110111111111111, 111111111111111101111111111111111, 1111111111111111110111111111111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008, Apr 09 2008, Apr 14 2008

Keywords

Comments

Subset of A138148, cyclops numbers with binary digits, only.
Subset of A002113, palindromes in base 10.
a(n) has 2*A090748(n) digits 1.
The number of digits of a(n) is 2*A000043(n)-1, equal to A133033(n), the number of proper divisors of n-th perfect number.
a(n) = (A135627(n) written in base 2).

Examples

			n ... A000396(n) - 1 = A135627(n) ............. a(n)
1 ............ 6 - 1 = ...... 5 ............... 101
2 ........... 28 - 1 = ..... 27 .............. 11011
3 .......... 496 - 1 = .... 495 ............ 111101111
4 ......... 8128 - 1 = ... 8127 .......... 1111110111111
5 ..... 33550336 - 1 = 33550335 .... 1111111111110111111111111
		

Crossrefs

Formula

a(n) = A138148(A090748(n)).

A291901 Numbers n such that the sum of sums of elements of subsets of divisors of n is a perfect number (A000396).

Original entry on oeis.org

2, 4, 13, 16, 64, 4096, 65536, 262144, 3145341, 932181397, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864, 75603657215035519123837860069507929970384679
Offset: 1

Views

Author

Jaroslav Krizek, Nov 02 2017

Keywords

Comments

Numbers n such that A229335(n) is in the sequence of perfect numbers, A000396.
Corresponding values of perfect numbers: 6, 28, 28, 496, 8128, 33550336, 8589869056, 137438691328, 33550336, ...
All even superperfect numbers A061652(n) are terms in this sequence.
Primes q of the form 2^(p-2) * (2^p - 1) - 1 where p is a Mersenne exponent (A000043) are terms: 2, 13, ...

Examples

			Divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 (perfect number).
sigma(16) * 2^(tau(16) - 1) = 31 * 16 = 496 (perfect number).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^6]  | SumOfDivisors(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1))) eq 2*(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1)))];
  • Maple
    isA000396 := proc(n)
        numtheory[sigma](n)=2*n ;
        simplify(%) ;
    end proc:
    for n from 1 do
        if isA000396(A229335(n)) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2017
  • Mathematica
    Select[Range[2^20], DivisorSigma[1, DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)] == 2 (DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)) &] (* Michael De Vlieger, Nov 02 2017 *)

Extensions

Terms a(10) onward added by Max Alekseyev, Sep 18 2024

A309530 Number of power-of-two-divisors of sum of divisors of sum of divisors of powers of two: a(n) = A001511(A051027(A000079(n))).

Original entry on oeis.org

1, 3, 4, 4, 6, 4, 8, 5, 5, 10, 5, 6, 14, 12, 12, 6, 18, 10, 20, 11, 9, 9, 6, 8, 8, 18, 6, 15, 7, 16, 32, 7, 11, 22, 17, 14, 7, 24, 22, 13, 5, 13, 11, 12, 20, 10, 7, 11, 9, 16, 33, 22, 6, 10, 15, 17, 28, 12, 6, 20, 62, 36, 12, 9, 24, 16, 5, 26, 12, 26, 10, 18, 6, 12, 16, 28, 19, 26
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Aug 06 2019

Keywords

Examples

			a(0) = A001511(A051027(A000079(0))) = A001511(A051027(A000079(2^0))) = A001511(A051027(1)) = A001511(1) = 1.
		

Crossrefs

Cf. A000043 (numbers m such that m - 1 divides a(m - 1) - 2), A000079, A001511, A051027, A090748.

Programs

  • Magma
    [Valuation(2*SumOfDivisors(SumOfDivisors(2^n)),2): n in [0..89]];
    
  • PARI
    a(n) = valuation(2*sigma(sigma(2^n)), 2); \\ Michel Marcus, Aug 06 2019
    
  • Python
    from sympy import divisor_sigma
    def A309530(n): return ((m:=int(divisor_sigma((1<Chai Wah Wu, Jul 13 2022

Formula

a(n) = A001511(A051027(A000079(n))).

A358320 Least odd number m such that m*2^n is a perfect, amicable or sociable number, and -1 if no such number exists.

Original entry on oeis.org

12285, 3, 7, 779, 31, 37, 127, 651, 2927269, 93, 25329329, 7230607, 8191, 66445153, 7613527, 18431675687, 131071, 264003743, 524287, 59592560831, 949755039781
Offset: 0

Views

Author

Jean-Marc Rebert, Nov 09 2022

Keywords

Comments

For n in {1,2,4,6,12,16,18}, a(n)*2^n is a perfect number. See A090748.
For n in {0,3,5,8,10,11,13,14,15,17,19}, a(n)*2^n is an amicable number.
For n in {7,9} a(n)*2^n is a sociable number of order 28.
That is, h_k(m*2^n) = m*2^n for some k > 0, where h_{k+1}(n) = h_k(h(n)) and h(n) = A001065(n), the sum of aliquot parts of n. - Charles R Greathouse IV, Nov 09 2022
Least m such that m*2^n is in A347770. - Charles R Greathouse IV, Nov 09 2022

Examples

			a(1) = 3, because 3 is an odd number and 3 * 2^1 = 6 is a perfect number, and no lesser number has this property.
		

Crossrefs

Programs

  • PARI
    sigmap(n)=if(n<=1, return(0)); sigma(n)-n
    cycle(n,TT=28)=my(x=n,T=1); while(x>0&&T<=TT, x=sigmap(x); if(x==n, return(T)); T++)
    a(n,TT=28)=my(p2n=2^n); forstep(m=1, +oo, 2, if(cycle(p2n*m,TT), return(m)))

Extensions

a(0), a(15)-a(20) from Jean-Marc Rebert, Nov 17 2022

A134712 Base-2 logarithm of (n-th even superperfect number divided by 2^n).

Original entry on oeis.org

0, 0, 1, 2, 7, 10, 11, 22, 51, 78, 95, 114, 507, 592, 1263, 2186, 2263, 3198, 4233, 4402, 9667, 9918, 11189, 19912, 21675, 23182, 44469, 86214, 110473, 132018, 216059, 756806, 859399, 1257752, 1398233, 2976184, 3021339, 6972554, 13466877
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			a(5) = 7 because the 5th even superperfect number is 4096, 2^5 = 32, 4096/32 = 128 and log_2(128) = 7 (because 2^7 = 128).
		

Crossrefs

Programs

  • Mathematica
    With[{max = 48}, MersennePrimeExponent[Range[max]] - Range[max] - 1] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = log_2(A061652(n)/(2^n)) = A000043(n) - n - 1 = A090748(n) - n.

A134713 Base-2 logarithm of (n-th even superperfect number divided by 2^n), plus 1.

Original entry on oeis.org

1, 1, 2, 3, 8, 11, 12, 23, 52, 79, 96, 115, 508, 593, 1264, 2187, 2264, 3199, 4234, 4403, 9668, 9919, 11190, 19913, 21676, 23183, 44470, 86215, 110474, 132019, 216060, 756807, 859400, 1257753, 1398234, 2976185, 3021340, 6972555, 13466878
Offset: 1

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			a(5) = 8 because the 5th even superperfect number is 4096, 2^5 = 32, 4096/32 = 128, log_2(128) = 7 (because 2^7 = 128) and 7+1 = 8.
		

Crossrefs

Programs

  • Mathematica
    With[{max = 48}, MersennePrimeExponent[Range[max]] - Range[max]] (* Amiram Eldar, Oct 21 2024 *)

Formula

a(n) = 1 + log_2(A061652(n)/(2^n)) = A000043(n) - n = A090748(n) - n + 1.

A135651 Even superperfect numbers written in base 2.

Original entry on oeis.org

10, 100, 10000, 1000000, 1000000000000, 10000000000000000, 1000000000000000000, 1000000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2008

Keywords

Comments

Also, superperfect numbers (A019279) written in base 2 (If there are no odd perfect numbers).
Also, concatenation of "1" and A090748(n) digits "0".
The number of digits of a(n) is equal to A000043(n) and also equal to the number of digits of n-th Mersenne prime written in base 2 (see A117293, A135650).

Examples

			a(3)=10000 because the 3rd even superperfect number A061652(3)=16 and 16 written in base 2 is equal to 10000.
		

Crossrefs

A135656 Perfect numbers divided by 2, written in base 2.

Original entry on oeis.org

11, 1110, 11111000, 111111100000, 111111111111100000000000, 11111111111111111000000000000000, 111111111111111111100000000000000000, 111111111111111111111111111111100000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2008

Keywords

Comments

The number of divisors of a(n) is equal to the number of its digits. This number is equal to 2*A000043(n)-2. The number of divisors of a(n) that are powers of 2 is equal to the number of divisors that are multiples of n-th Mersenne prime A000668(n) and this number of divisors is equal to A090748(n). The first digits of a(n) are "1". For n>1 the last digits are "0". The number of digits "1" is equal to A000043(n). The number of digits "0" is equal to A000043(n)-2. The concatenation of digits "1" gives the n-th Mersenne prime written in binary (see A117293(n)). The structure of divisors of a(n) represent a triangle (see example).

Examples

			a(4)=111111100000 because the 4th. perfect number is 8128 and 8128/2=4064 and 4064 written in base 2 is 111111100000. Note that 1111111 is the 4th. Mersenne prime A000668(4)=127, written in base 2.
The structure of divisors of a(4)=111111100000
		

Crossrefs

Perfect numbers divided by 2: A133028. Cf. A000396, A000668, A019279, A090748, A117293, A135650.

Formula

a(n)=A133028(n) written in base 2.
Previous Showing 11-20 of 31 results. Next