cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A136064 Mother primes of order 5.

Original entry on oeis.org

23, 67, 199, 331, 397, 463, 661, 727, 859, 1123, 1783, 2113, 2179, 2311, 2971, 3037, 3433, 3631, 3697, 4027, 4093, 4159, 4357, 4621, 5347, 5479, 5743, 6007, 6271, 6337, 6733, 7393, 7591, 7789, 8053, 8317, 8647, 9043, 9109, 9439, 9967, 10099, 10627
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063.

Crossrefs

Programs

  • Mathematica
    n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136065 Mother primes of order 6.

Original entry on oeis.org

53, 79, 131, 157, 521, 547, 599, 677, 859, 911, 937, 1249, 1301, 1327, 1951, 2029, 2237, 2341, 2549, 2731, 2887, 2939, 3121, 3251, 3329, 3407, 3511, 3797, 4057, 4759, 4967, 5591, 5981, 6007, 6761, 7229, 7307, 7411, 7489, 7879, 8009, 8191, 8581, 8737
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064.

Crossrefs

Programs

  • Mathematica
    n = 6; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136067 Mother primes of order 8.

Original entry on oeis.org

103, 307, 613, 1021, 1123, 1327, 2143, 2347, 2551, 3061, 3571, 3877, 4591, 6427, 6733, 7753, 8263, 8467, 9181, 9283, 10303, 10711, 11731, 12037, 12343, 12547, 12853, 15607, 15913, 16831, 17137, 17341, 17851, 18973, 19891, 21013, 21727
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136068 Mother primes of order 9.

Original entry on oeis.org

191, 229, 419, 571, 761, 1103, 1483, 1559, 1901, 2053, 2129, 2851, 3079, 4219, 4409, 4523, 4561, 4751, 6271, 6689, 6803, 7069, 7753, 8171, 8209, 8513, 8741, 8779, 9311, 9463, 9539, 10831, 11743, 11971, 12161, 12503, 12541, 12959, 14251, 14593, 14669
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136070 Mother primes of order 11.

Original entry on oeis.org

47, 139, 277, 691, 829, 967, 1381, 1657, 2347, 3727, 4831, 5107, 5521, 6211, 7039, 7177, 7591, 8419, 9109, 9661, 10627, 12007, 12421, 13249, 14767, 16699, 17389, 19597, 20149, 20287, 21529, 24151, 24979, 25117, 26497, 28429, 29671, 29947
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067. For mother primes of order 10 see A136068.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A091179 A088878 indexed by A000040.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 12, 14, 15, 16, 18, 19, 20, 27, 30, 31, 33, 38, 39, 42, 43, 44, 47, 54, 55, 56, 58, 59, 62, 63, 65, 67, 68, 69, 74, 79, 83, 84, 86, 89, 91, 93, 94, 99, 100, 102, 107, 108, 110, 122, 123, 129, 133, 134, 135, 139, 143, 147, 153, 154, 155, 156, 162, 167
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Crossrefs

Programs

  • Maple
    select(n -> isprime(3*ithprime(n)-2), [$1..1000]); # Robert Israel, Mar 04 2016
  • Mathematica
    PrimePi@ Select[Prime@ Range@ 167, PrimeQ[3 # - 2] &] (* Michael De Vlieger, Mar 04 2016 *)

Formula

a(n)=k such that A000040(k) = A088878(n).

Extensions

Offset corrected by Michael De Vlieger, Mar 04 2016

A265763 Numerators of primes-only best approximates (POBAs) to 3; see Comments.

Original entry on oeis.org

7, 5, 17, 13, 23, 19, 31, 41, 37, 53, 59, 71, 67, 89, 113, 109, 131, 127, 139, 157, 179, 181, 199, 211, 239, 251, 269, 293, 311, 307, 337, 383, 379, 409, 419, 449, 491, 487, 503, 499, 521, 541, 571, 577, 593, 599, 631, 683, 701, 719, 751, 773, 769, 787, 809
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3 start with 7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *)
    Numerator[tL]   (* A091180 *)
    Denominator[tL] (* A088878 *)
    Numerator[tU]   (* A094525 *)
    Denominator[tU] (* A023208 *)
    Numerator[y]    (* A265763 *)
    Denominator[y]  (* A265764 *)

A265764 Denominators of primes-only best approximates (POBAs) to 3; see Comments.

Original entry on oeis.org

2, 2, 5, 5, 7, 7, 11, 13, 13, 17, 19, 23, 23, 29, 37, 37, 43, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 103, 103, 113, 127, 127, 137, 139, 149, 163, 163, 167, 167, 173, 181, 191, 193, 197, 199, 211, 227, 233, 239, 251, 257, 257, 263, 269, 271, 277, 293
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3 start with  7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *)
    Numerator[tL]   (* A091180 *)
    Denominator[tL] (* A088878 *)
    Numerator[tU]   (* A094525 *)
    Denominator[tU] (* A023208 *)
    Numerator[y]    (* A265763 *)
    Denominator[y]  (* A265764 *)

A338410 Primes p such that (p+2)/3 and (p+3)/2 are prime.

Original entry on oeis.org

7, 19, 31, 139, 199, 211, 379, 499, 631, 919, 1039, 1291, 1399, 1759, 2179, 2719, 2731, 2971, 3271, 3691, 4591, 5791, 5851, 6079, 7591, 8011, 8779, 10039, 11299, 11719, 11731, 12979, 14251, 15031, 15511, 15679, 18451, 18859, 20071, 21379, 21559, 22051, 22639, 23599, 24499, 24691, 25339, 25579
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 25 2020

Keywords

Comments

All terms == 7 (mod 12).

Examples

			a(3) = 31 is in the sequence because 31, (31+2)/3 = 11 and ((31+3)/2) = 17 are prime.
		

Crossrefs

Intersection of A091180 and A092109.

Programs

  • Maple
    filter:= t -> isprime(t) and isprime((t+2)/3) and isprime((t+3)/2):
    select(filter, [seq(i,i=7..30000,12)]);
  • Mathematica
    Select[Prime[Range[3000]],AllTrue[{(#+2)/3,(#+3)/2},PrimeQ]&] (* Harvey P. Dale, May 20 2023 *)
  • PARI
    isok(p) = iferr(isprime(p) && isprime((p+2)/3) && isprime((p+3)/2), E, 0); \\ Michel Marcus, Oct 25 2020

A257002 Primes p such that p+2 divides p^p+2.

Original entry on oeis.org

7, 13, 19, 31, 37, 61, 67, 109, 127, 139, 157, 181, 193, 199, 211, 307, 313, 337, 379, 397, 409, 487, 499, 541, 571, 577, 631, 691, 751, 769, 787, 811, 829, 877, 919, 937, 991, 1009, 1021, 1039, 1117, 1201, 1291, 1297, 1327, 1381, 1399, 1459, 1471, 1531, 1567
Offset: 1

Views

Author

K. D. Bajpai, Apr 14 2015

Keywords

Comments

All the terms in this sequence are congruent to 1 mod 3.
Primes p such that 2^p == 2 (mod p+2). Includes A091180. - Robert Israel, Apr 14 2015

Examples

			a(1) = 7 is prime; 7+2 = 9 divides 7^7 + 2 = 823545.
a(2) = 13 is prime; 13+2 = 15 divides 13^13 + 2 = 302875106592255.
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1600) | (p^p+2) mod (p+2) eq 0 ]; // Vincenzo Librandi, Apr 15 2015
  • Maple
    select(t -> isprime(t) and (2 &^t - 2) mod (t+2) = 0, [seq(6*i+1,i=1..10^4)]); # Robert Israel, Apr 14 2015
  • Mathematica
    Select[Prime[Range[3000]], Mod[#^# + 2, # + 2] == 0 &]
    Select[Prime[Range[500]],PowerMod[#,#,#+2]==#&] (* Harvey P. Dale, May 19 2017 *)
  • PARI
    forprime(p=2,1000, if(Mod(p^p+2,p+2)==0, print1(p, ", ")));
    
  • Python
    from sympy import prime
    A257002_list = [p for p in (prime(n) for n in range(1,10**4)) if pow(p, p, p+2) == p] # Chai Wah Wu, Apr 14 2015
    
Previous Showing 21-30 of 31 results. Next