cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A111599 Lah numbers: a(n) = n!*binomial(n-1,8)/9!.

Original entry on oeis.org

1, 90, 4950, 217800, 8494200, 309188880, 10821610800, 371026656000, 12614906304000, 428906814336000, 14668613050291200, 506733905373696000, 17735686688079360000, 630299019222512640000, 22780807409042242560000
Offset: 9

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.

Crossrefs

Column 9 of unsigned A008297 and A111596.
Column 8: A111598.

Programs

  • Maple
    part_ZL:=[S,{S=Set(U,card=r),U=Sequence(Z,card>=1)}, labeled]: seq(count(subs(r=9,part_ZL),size=m),m=9..23) ; # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    Table[n!*Binomial[n-1, 8]/9!, {n, 9, 30}] (* Wesley Ivan Hurt, Dec 10 2013 *)

Formula

E.g.f.: ((x/(1-x))^9)/9!.
a(n) = (n!/9!)*binomial(n-1, 9-1).
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j), then a(n) = (-1)^(n-1)*f(n,9,-9), n >= 9. - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=9} 1/a(n) = 564552*(Ei(1) - gamma) - 264528*e - 873657/35, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=9} (-1)^(n+1)/a(n) = 28393416*(gamma - Ei(-1)) - 16938720/e - 573537159/35, where Ei(-1) = -A099285. (End)

A111600 Lah numbers: a(n) = n!*binomial(n-1,9)/10!.

Original entry on oeis.org

1, 110, 7260, 377520, 17177160, 721440720, 28857628800, 1121325004800, 42890681433600, 1629845894476800, 61934143990118400, 2364758225077248000, 91043191665474048000, 3543681152517682176000, 139722285442125754368000
Offset: 10

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.

Crossrefs

Column 10 of unsigned A008297 and A111596.
Column 9: A111599.

Programs

  • Mathematica
    Table[n! * Binomial[n - 1, 9]/10!, {n, 10, 25}] (* Amiram Eldar, May 02 2022 *)

Formula

E.g.f.: ((x/(1-x))^10)/10!.
a(n) = (n!/10!)*binomial(n-1, 10-1).
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i)*x^(k-j) then a(n) = (-1)^n*f(n,10,-10), (n>=10). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=10} 1/a(n) = 5086710*(gamma - Ei(1)) + 50940*e + 91914449/14, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=10} (-1)^n/a(n) = 413689770*(gamma - Ei(-1)) - 246749400/e - 3342795017/14, where Ei(-1) = -A099285. (End)

A219541 Expansion of e.g.f.: Sum_{n>=0} Product_{k=1..n} log(1 + k*x).

Original entry on oeis.org

1, 1, 3, 20, 242, 4584, 124936, 4638360, 225037200, 13820428368, 1048006461024, 96171381464256, 10503700943629824, 1346451508974957696, 200184649396819872768, 34167655864475762390784, 6635466680845611611326464, 1454780635849943337186155520
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 20*x^3/3! + 242*x^4/4! + 4584*x^5/5! + ...
where
A(x) = 1 + log(1+x) + log(1+x)*log(1+2*x) + log(1+x)*log(1+2*x)*log(1+3*x) + log(1+x)*log(1+2*x)*log(1+3*x)*log(1+4*x) + ...
		

Crossrefs

Programs

  • Maple
    a:=series(add(mul(log(1+k*x),k=1..n),n=0..100),x=0,18): seq(n!*coeff(a,x,n),n=0..17); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    With[{nmax = 30}, CoefficientList[Series[Sum[Product[Log[1 + j*x], {j, 1, k}], {k,0,3*nmax}], {x,0,nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 04 2018 *)
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,prod(k=1,m,log(1+k*x+x*O(x^n)))),n)}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) ~ exp(1/2) * d^(n+1) * (n!)^2, where d = 1/(Ei(1)-gamma) = 1/(A091725 - A001620) = 0.75878167350772..., where Ei is the second exponential integral and gamma is the Euler-Mascheroni constant. - Vaclav Kotesovec, Nov 02 2014

A224788 E.g.f. satisfies: A(x) = exp( Integral A(x)/(1 - x*A(x)^2) dx ).

Original entry on oeis.org

1, 1, 3, 18, 168, 2142, 34704, 682740, 15810372, 421339176, 12702393792, 427435993512, 15881634963216, 645804320863680, 28527455317884336, 1360332028008819360, 69645942884911181184, 3810436222004101378656, 221867131720533800409216, 13698420738298341356760768
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2013

Keywords

Comments

Compare to: C(x) = exp( Integral C(x)^2/(1 - x*C(x)^2) dx ), which is satisfied by: C(x) = (1-sqrt(1-4*x))/(2*x) (Catalan numbers, A000108).
Compare to: W(x) = exp( Integral W(x)/(1 - x*W(x)) dx ), which is satisfied by: W(x) = LambertW(-x)/(-x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 168*x^4/4! + 2142*x^5/5! +...
where
log(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 99*x^4/4! + 1236*x^5/5! + 19752*x^6/6! +...
A(x)/(1-x*A(x)^2) = 1 + 2*x + 11*x^2/2! + 99*x^3/3! + 1236*x^4/4! + 19752*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    a = ConstantArray[0,21]; a[[1]]=1; a[[2]]=1; Do[a[[n+2]] = n!*Sum[a[[i+1]]*a[[n-i+1]]/i!/(n-i)!,{i,0,n}] + n!*Sum[a[[j+1]]/(j-1)!*Sum[a[[i+1]]*a[[n-j-i+1]]/i!/(n-j-i)!,{i,0,n}],{j,1,n}],{n,1,18}]; a (* Vaclav Kotesovec, Feb 19 2014 *)
    FindRoot[ExpIntegralEi[1/Sqrt[r]] - ExpIntegralEi[1] + E == (r+Sqrt[r]) * E^(1/Sqrt[r]),{r,1/2},WorkingPrecision->50] (* program for numerical value of the radius of convergence r, Vaclav Kotesovec, Feb 19 2014 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(A/(1-x*A^2 +x*O(x^n)))));n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. derivative: A'(x) = A(x)^2 / (1-x*A(x)^2). - Vaclav Kotesovec, Feb 19 2014
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * r^(n+1/4)), where r = 0.28396034297... is the root of the equation Ei(1/sqrt(r)) - Ei(1) + exp(1) = (r+sqrt(r)) * exp(1/sqrt(r)), where Ei is the Exponential Integral. - Vaclav Kotesovec, Feb 19 2014

A306770 Decimal expansion of Sum_{k>=0} 1/(k! + (k+1)! + (k+2)!).

Original entry on oeis.org

4, 0, 0, 3, 7, 9, 6, 7, 7, 0, 0, 4, 6, 4, 1, 3, 4, 0, 5, 0, 0, 2, 7, 8, 6, 2, 7, 1, 0, 3, 4, 3, 0, 6, 5, 9, 7, 8, 2, 3, 4, 5, 8, 4, 7, 9, 0, 7, 1, 7, 5, 5, 8, 2, 1, 2, 6, 5, 0, 6, 4, 3, 0, 7, 2, 6, 4, 3, 0, 5, 2, 2, 5, 9, 7, 4, 0, 8, 1, 1, 1, 9, 5, 9, 4, 2, 8, 5, 3, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2019

Keywords

Examples

			0.40037967700464134050027...
		

Crossrefs

Cf. A001113 (exp(1)), A001620 (gamma), A054119, A091725 (ExpIntegralEi[1]).

Programs

  • PARI
    exp(1) - 1 + Euler - real(-eint1(-1)) \\ Michel Marcus, Mar 09 2019

Formula

Sum_{k>=0} 1/(k! + (k+1)! + (k+2)!) = exp(1) - 1 + gamma - ExpIntegralEi[1].
From Amiram Eldar, Jun 26 2021: (Start)
Equals Sum_{k>=2} 1/A054119(k).
Equals -Integral{x=0..1} x*log(x)*exp(x) dx. (End)

A369883 Decimal expansion of Integral_{x=0..1} x/(1 - log(x)) dx.

Original entry on oeis.org

3, 6, 1, 3, 2, 8, 6, 1, 6, 8, 8, 8, 2, 2, 2, 5, 8, 4, 6, 9, 7, 1, 6, 1, 6, 5, 7, 6, 7, 8, 7, 3, 9, 9, 3, 8, 9, 5, 4, 5, 9, 0, 6, 4, 1, 5, 4, 7, 3, 0, 2, 3, 9, 6, 1, 7, 1, 3, 7, 7, 2, 3, 4, 5, 7, 8, 8, 8, 1, 7, 6, 7, 0, 8, 1, 4, 9, 0, 5, 8, 8, 5, 8, 4, 5, 0, 4, 8, 8, 5, 7, 9, 3, 7, 8, 0, 7, 8, 2, 8, 8, 3, 5, 3, 5
Offset: 0

Views

Author

Claude H. R. Dequatre, Feb 04 2024

Keywords

Examples

			0.361328616888222584697161657678739938954590641...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-E^2 * ExpIntegralEi[-2], 10, 120][[1]] (* Amiram Eldar, Feb 04 2024 *)
  • PARI
    intnum(x=0,1,x/(1-log(x)))

Formula

Equals Integral_{x=0..1} x/(1 - log(x)) dx.
Equals - e^2*Ei(-2), where Ei(x) is the Exponential Integral function [Shamos].
Equals Integral_{x=0..oo} dx/(e^x*(x + 2)) [Shamos].

A364521 Decimal expansion of the solution to Ei(x) = x.

Original entry on oeis.org

5, 2, 7, 6, 1, 2, 3, 4, 7, 2, 0, 1, 7, 4, 2, 0, 6, 0, 5, 1, 6, 9, 1, 5, 8, 5, 1, 3, 8, 0, 5, 1, 8, 7, 2, 1, 6, 9, 1, 6, 4, 1, 7, 6, 4, 1, 6, 1, 5, 2, 5, 4, 7, 3, 1, 6, 8, 8, 7, 3, 3, 2, 9, 0, 3, 3, 1, 0, 1, 3, 4, 2, 7, 7, 7, 4, 6, 6, 7, 5, 2, 4, 5, 7, 8, 0, 5, 2, 5, 8, 4, 7, 5, 0, 7, 8, 6, 1, 4, 4, 7
Offset: 0

Views

Author

Michal Paulovic, Aug 15 2023

Keywords

Comments

Fixed point of exponential integral.

Examples

			0.5276123472017420...
		

Crossrefs

Programs

  • Maple
    Digits:=101: fsolve(Ei(1,x)-x, x);
  • Mathematica
    RealDigits[FindRoot[ExpIntegralE[1, x] - x, {x, 0.5}, WorkingPrecision -> 101][[1, 2]], 10, 101][[1]]
  • PARI
    default(realprecision, 101); solve(x=0.5,0.6,eint1(x)-x)
    
  • PARI
    solve(x=0.5,0.6,-Euler()-log(x)-suminf(k=1,(-x)^k/(k*k!))-x)
Previous Showing 41-47 of 47 results.