cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A376913 Decimal expansion of Product_{k=1..8} Gamma(k/3).

Original entry on oeis.org

5, 2, 3, 8, 6, 5, 9, 6, 2, 5, 1, 8, 5, 6, 5, 8, 4, 1, 0, 3, 2, 9, 2, 3, 2, 0, 9, 9, 9, 7, 6, 3, 6, 6, 2, 6, 8, 1, 3, 5, 9, 7, 7, 3, 9, 9, 2, 1, 5, 7, 5, 6, 6, 5, 0, 5, 6, 3, 4, 8, 0, 9, 7, 6, 2, 9, 1, 0, 5, 5, 8, 0, 4, 6, 4, 1, 9, 1, 5, 1, 8, 2, 3, 1, 9, 1, 6, 8, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			5.2386596251856584103292320999763662681359773992...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376912 (m = 7).

Programs

  • Mathematica
    First[RealDigits[640*Pi^3/(2187*Sqrt[3]), 10, 100]]

Formula

Equals 640*Pi^3/(2187*sqrt(3)) = 640*A091925/(3^7*A002194) (cf. eq. 90 in Weisstein link).

A377557 Decimal expansion of 2*Pi^3/(81*sqrt(3)) + 13*zeta(3)/27.

Original entry on oeis.org

1, 0, 2, 0, 7, 8, 0, 0, 4, 4, 4, 3, 3, 3, 6, 3, 1, 0, 2, 8, 2, 3, 2, 5, 4, 7, 3, 9, 9, 0, 3, 9, 8, 1, 8, 2, 5, 3, 5, 3, 4, 1, 0, 9, 3, 7, 5, 1, 9, 0, 6, 9, 6, 6, 9, 7, 3, 5, 7, 2, 0, 7, 5, 2, 5, 3, 9, 1, 4, 6, 5, 9, 9, 2, 6, 5, 6, 2, 7, 1, 5, 5, 4, 4, 9, 8, 0, 6, 7, 2, 0, 3, 4, 2, 6, 7, 6, 1, 3, 7
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.0207800444333631028232547399039818253534109375...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[2Pi^3/(81Sqrt[3])+13Zeta[3]/27,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(3*k + 1)^3 (see Finch).
Equals -psi''(1/3)/54 (see Shamos).
Equals hypergeom([1/3, 1/3, 1/3, 1], [4/3, 4/3, 4/3], 1). - R. J. Mathar, Jul 14 2025

A377558 Decimal expansion of Pi^3/64 + 7*zeta(3)/16.

Original entry on oeis.org

1, 0, 1, 0, 3, 7, 2, 9, 6, 8, 2, 6, 2, 0, 0, 7, 1, 9, 0, 1, 0, 4, 2, 0, 2, 8, 6, 8, 5, 8, 4, 7, 1, 8, 6, 7, 0, 9, 9, 4, 4, 5, 1, 6, 3, 6, 7, 4, 0, 9, 2, 3, 0, 6, 8, 5, 0, 5, 1, 2, 7, 2, 1, 3, 3, 3, 4, 0, 2, 9, 1, 3, 5, 6, 1, 6, 9, 1, 3, 6, 3, 3, 7, 9, 3, 5, 5, 4, 1, 4, 8, 3, 3, 8, 5, 0, 4, 2, 7, 2
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.01037296826200719010420286858471867099445163674...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/64+7Zeta[3]/16,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(4*k + 1)^3 (see Finch).
Equals -psi''(1/4)/128 = -(psi''(1/8) + psi''(5/8))/1024 (see Shamos).
Equals hypergeom([1/4, 1/4, 1/4, 1], [5/4, 5/4, 5/4], 1). - R. J. Mathar, Jul 14 2025

A377560 Decimal expansion of Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.

Original entry on oeis.org

1, 0, 0, 3, 6, 8, 5, 5, 1, 5, 3, 4, 7, 9, 5, 2, 6, 9, 7, 0, 6, 3, 2, 3, 0, 1, 3, 7, 0, 2, 4, 8, 6, 0, 5, 7, 3, 1, 5, 2, 7, 2, 7, 8, 4, 3, 5, 9, 3, 8, 9, 3, 3, 2, 7, 8, 6, 6, 5, 7, 9, 0, 8, 5, 3, 1, 5, 3, 9, 2, 7, 3, 2, 7, 3, 6, 5, 8, 9, 1, 5, 9, 3, 9, 5, 6, 2, 5, 8, 3, 4, 8, 5, 8, 4, 6, 1, 0, 4, 0
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.00368551534795269706323013702486057315272784359...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/(36*Sqrt[3])+91*Zeta[3]/216,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(6*k + 1)^3 (see Finch).
Equals -psi''(1/6)/432 (see Shamos).

A058285 Continued fraction for Pi^3.

Original entry on oeis.org

31, 159, 3, 7, 1, 13, 2, 1, 3, 1, 12, 2, 2, 4, 34, 2, 43, 3, 1, 3, 2, 1, 1, 5, 1, 1, 4, 1, 5, 4, 2, 4, 11, 3, 3, 1, 1, 2, 1, 7, 2, 1, 1, 3, 1, 12, 3, 1, 9, 2, 1, 8, 23, 1, 45, 1, 1, 2, 1, 23, 3, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 16, 1, 15, 1, 2, 4, 1, 2, 1, 12, 8, 1, 8, 2, 1, 7, 2, 2, 4, 1, 11, 2, 23
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Examples

			31.00627668029982017547631... = 31 + 1/(159 + 1/(3 + 1/(7 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 22 2009
		

Crossrefs

Cf. A091925 Decimal expansion. - Harry J. Smith, Jun 22 2009

Programs

  • Mathematica
    ContinuedFraction[ Pi^3, 100]
  • PARI
    contfrac(Pi^3)
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^3); for (n=0, 20000, write("b058285.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 22 2009

Extensions

More terms from Jason Earls, Jul 24 2001

A096388 Decimal expansion of Pi^3 - e^3.

Original entry on oeis.org

1, 0, 9, 2, 0, 7, 3, 9, 7, 5, 7, 1, 1, 2, 1, 5, 2, 4, 3, 4, 5, 4, 7, 7, 8, 5, 4, 1, 2, 5, 1, 9, 6, 7, 7, 3, 0, 5, 2, 3, 7, 3, 8, 0, 7, 2, 7, 3, 3, 0, 9, 5, 7, 5, 4, 9, 7, 6, 5, 6, 0, 3, 8, 7, 4, 1, 0, 7, 5, 4, 9, 0, 3, 9, 3, 7, 3, 7, 3, 2, 3, 0, 6, 3, 6, 2, 2, 0, 3, 8, 7, 2, 3, 4, 9, 8, 6, 8, 4, 9, 0, 8, 7, 6, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Aug 10 2004

Keywords

Examples

			10.920739757112152434547785412519677...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3-E^3,10,120][[1]] (* Harvey P. Dale, Dec 07 2014 *)

Formula

Equals A091925 - A091933. - Michel Marcus, Mar 11 2018

A164083 Ceiling of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

7, 40, 125, 260, 409, 513, 537, 482, 379, 265, 167, 95, 50, 25, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the floor is A164081.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.

Examples

			Table of approximate real values before rounding up.
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(2Pi)^n/(n-1)!],{n,60}] (* Harvey P. Dale, Jul 30 2020 *)

Formula

a(n) = ceiling(((2*pi)^n)/(n-1)!).

Extensions

Definition corrected - R. J. Mathar, Sep 09 2009

A276120 Decimal expansion of zeta(3)/Pi^3.

Original entry on oeis.org

0, 3, 8, 7, 6, 8, 1, 7, 9, 6, 0, 2, 9, 1, 6, 7, 9, 8, 9, 4, 1, 1, 1, 9, 8, 9, 0, 3, 1, 8, 7, 2, 1, 1, 4, 9, 8, 0, 6, 2, 3, 4, 5, 6, 8, 0, 3, 9, 5, 5, 2, 5, 7, 9, 2, 2, 3, 1, 2, 6, 7, 6, 2, 1, 2, 3, 7, 7, 7, 1, 3, 7, 0, 1, 2, 2, 8, 6, 8, 5, 5, 2, 7, 1, 8, 5, 1
Offset: 0

Views

Author

Martin Renner, Sep 10 2016

Keywords

Comments

zeta(3) is sometimes called Apéry's constant after the French mathematician Roger Apéry, who proved in 1978 that it is irrational. Despite this it is not known if this constant divided by Pi^3 is irrational or even transcendental.

Examples

			0.03876817960291679894...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]/Pi^3, 10, 100][[1]] (* Amiram Eldar, Jul 07 2021 *)
  • PARI
    zeta(3)/Pi^3 \\ Michel Marcus, Jul 07 2021

Formula

Extensions

Offset corrected by Rick L. Shepherd, Nov 03 2016

A306604 Number of perfect squares in the half-open interval [Pi^(n-1), Pi^n).

Original entry on oeis.org

0, 1, 2, 2, 4, 8, 14, 23, 43, 75, 134, 236, 419, 743, 1316, 2333, 4135, 7329, 12992, 23026, 40813, 72338, 128218, 227259, 402806, 713955, 1265453, 2242956, 3975538, 7046456, 12489518, 22137096, 39236979, 69545736, 123266607, 218484372, 387253468, 686388899
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Comments

Inspired by A306486.

Examples

			a(4) = 4: in the interval [Pi^3, Pi^4) = [31.006..., 97.409...) = are four perfect squares: 36, 49, 64, 81.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n)-f(n-1))(i-> ceil(Pi^(i/2))):
    seq(a(n), n=0..42);

Formula

a(n) = ceiling(Pi^(n/2)) - ceiling(Pi^((n-1)/2)).
a(n) = A102477(n) - A102477(n-1).
Sum_{i=0..n} a(i) = A102475(n) for n > 0.
Lim_{n->oo} a(n+1)/a(n) = sqrt(Pi) = 1.7724538509... = A002161.

A359533 Decimal expansion of Sum_{k>=0} (-1/64)^k*binomial(2*k, k)^3*(4*k + 1)*H_k, where H_k is the k-th harmonic number (negated).

Original entry on oeis.org

2, 7, 6, 4, 2, 7, 2, 0, 4, 2, 4, 5, 9, 8, 6, 5, 7, 3, 0, 9, 2, 6, 3, 9, 8, 2, 5, 6, 1, 6, 8, 8, 9, 9, 4, 6, 7, 8, 3, 7, 4, 0, 7, 9, 5, 1, 9, 0, 4, 8, 5, 0, 6, 3, 0, 3, 2, 7, 7, 6, 9, 2, 0, 2, 7, 0, 3, 3, 7, 9, 6, 9, 4, 4, 5, 8, 9, 8, 7, 9, 7, 1, 0, 9, 8, 0, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Examples

			0.276427204245986573092639825616889946783740795...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[(Gamma[1/8]Gamma[3/8]/(Gamma[1/4]Gamma[3/4]))^2/(6Sqrt[2]Pi)-4Log[2]/Pi,100]]]

Formula

Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8)/(Gamma(1/4)*Gamma(3/4)))^2/(6*sqrt(2)*Pi).
Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8))^2/(12*sqrt(2)*Pi^3).
Previous Showing 21-30 of 38 results. Next