cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A352056 Sum of the 10th powers of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 1024, 59049, 1048576, 9765625, 60467200, 282475249, 1073741824, 3486843450, 10000001024, 25937424601, 61918412800, 137858491849, 289254656000, 576660215299, 1099511627776, 2015993900449, 3570527693824, 6131066257801, 10240001048576, 16680163512499
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^10 * Sum_{d|10, d<10, d odd} 1 / d^10 = 10^10 * (1/1^10 + 1/5^10) = 10000001024.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), this sequence (k=10).

Programs

  • Mathematica
    A352056[n_]:=DivisorSum[n,1/#^10&,#A352056,50] (* Paolo Xausa, Aug 10 2023 *)
    a[n_] := DivisorSigma[-10, n/2^IntegerExponent[n, 2]] * n^10 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^10 * sigma(n >> valuation(n, 2), -10) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^10 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^10 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 19 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A321814(n) * A006519(n)^10 - A000035(n).
Sum_{k=1..n} a(k) = c * n^11 / 11, where c = 2047*zeta(11)/2048 = 1.00000566605... . (End)

A293216 a(n) = Product_{d|n, dA260443(d).

Original entry on oeis.org

1, 2, 2, 6, 2, 36, 2, 30, 12, 108, 2, 2700, 2, 180, 216, 210, 2, 48600, 2, 40500, 360, 1620, 2, 661500, 36, 2700, 1080, 94500, 2, 153090000, 2, 2310, 3240, 3780, 1080, 4465125000, 2, 40500, 5400, 69457500, 2, 34445250000, 2, 21262500, 4082400, 56700, 2, 560290500, 60, 127575000, 7560, 49612500, 2, 1205583750000, 9720, 254677500, 81000, 132300, 2
Offset: 1

Author

Antti Karttunen, Oct 03 2017

Keywords

Crossrefs

Cf. A048675, A260443, A293217 (restricted growth sequence transform), A293214 (a variant).
Cf. also A001065, A091954.

Programs

Formula

a(n) = Product_{d|n, dA260443(d).
For all n >= 0, a(2^n) = A002110(n).
For all n >= 1, A007814(a(n)) = A091954(n) and A048675(a(n)) = A001065(n).

A293451 Number of proper divisors of n of the form 4k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 2, 3
Offset: 1

Author

Antti Karttunen, Oct 19 2017

Keywords

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A293451(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091954(n) - A293513(n).
a(n) = A001826(n) - A121262(n-1).
G.f.: Sum_{k>=1} x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,4) - (2 - gamma)/4 = A256778 - (2 - A001620)/4 = 0.354593... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A325937 Expansion of Sum_{k>=1} (-1)^(k + 1) * x^(2*k) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1, -1, 1, 1, 3, -2, 1, 1, 1, -1, 3, 1, 1, -3, 2, 1, 3, -1, 1, 1, 1, -3, 3, 1, 3, -2, 1, 1, 3, -3, 1, 1, 1, -1, 5, 1, 1, -5, 2, 1, 3, -1, 1, 1, 3, -3, 3, 1, 1, -3, 1, 1, 5, -4, 3, 1, 1, -1, 3, 1, 1, -5, 1, 1, 5, -1, 3, 1, 1, -5
Offset: 1

Author

Ilya Gutkovskiy, Sep 09 2019

Keywords

Comments

Number of odd proper divisors of n minus number of even proper divisors of n.

Crossrefs

Cf. A032741, A048272, A058344, A091954, A275495 (partial sums), A325939.

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[-DivisorSum[n, (-1)^# &, # < n &], {n, 1, 80}]
  • PARI
    A325937(n) = -sumdiv(n, d, if(d==n,0,((-1)^d))); \\ Antti Karttunen, Sep 20 2019

Formula

G.f.: Sum_{k>=2} x^k / (1 + x^k).
a(n) = -Sum_{d|n, d
a(n) = A048272(n) + (-1)^n.

A293513 Number of proper divisors of n of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 2, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 1, 0, 0, 2, 1, 2, 2, 0, 0, 2, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 4
Offset: 1

Author

Antti Karttunen, Oct 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A293513(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091954(n) - A293451(n).
a(n) = A001842(n) - A121262(n+1).
G.f.: Sum_{k>=1} x^(8*k-2) / (1 - x^(4*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (2 - gamma)/4 = A256846 - (2 - A001620)/4 = -0.430804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A096157 Numbers whose numbers of odd and even proper divisors differ at most by 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 26, 28, 29, 30, 31, 34, 37, 38, 41, 42, 43, 44, 46, 47, 50, 52, 53, 54, 58, 59, 61, 62, 66, 67, 68, 70, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 90, 92, 94, 97, 98, 101, 102, 103, 106, 107, 109, 110, 113
Offset: 1

Author

Reinhard Zumkeller, Jun 18 2004

Keywords

Comments

A union of 1, 4, primes, quadrupled primes, and all numbers of the form 4k+2. - Ivan Neretin, Aug 12 2015

Examples

			Proper divisors of 42 are {1,2,3,6,7,14,21}: 4=#{1,3,7,21} are odd and 3=#{2,6,14} are even, as abs(4-3)=1, 42 is a term.
		

Crossrefs

Programs

  • Maple
    filter:= n -> if n::odd then isprime(n) elif n mod 4 = 0 then isprime(n/4) else true fi:
    filter(1):= true: filter(4):= true:
    select(filter, [$1..1000]); # Robert Israel, Aug 12 2015
  • Mathematica
    okQ[n_] := With[{dd = Most[Divisors[n]]},
         Abs[2 Count[dd, _?OddQ] - Length[dd]] <= 1];
    Select[Range[1000], okQ] (* Jean-François Alcover, Dec 16 2021 *)
  • PARI
    is(n)=if(bittest(n,0),isprime(n),bittest(n,1)||isprime(n>>2))||n<9 \\ M. F. Hasler, Aug 13 2015

Formula

Abs(A032741(a(n)) - 2*A091954(a(n))) <= 1.

A096158 Number of permutations of proper divisors of n such that the sum of adjacent pairs of divisors is prime.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Author

Reinhard Zumkeller, Jun 18 2004

Keywords

Comments

For n>4: a(n)=2 iff (n/2,2+n/2) is twin prime pair, a(2*A001359(n))=2;
a(A096160(n)) > 0.

Examples

			Proper divisors of n=12 are {1,2,3,4,6}:
[2,3,4,1,6]->(2+3,3+4,4+1,1+6)=(5,7,5,7),
[4,3,2,1,6]->(4+3,3+2,2+1,1+6)=(7,5,3,7),
[6,1,2,3,4]->(6+1,1+2,2+3,3+4)=(7,3,5,7) and
[6,1,4,3,2]->(6+1,1+4,4+3,3+2)=(7,5,7,5): therefore a(12)=4.
		

Crossrefs

A368684 Number of partitions of n into 2 parts such that the smaller part divides both n and floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 8, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 1, 8, 1, 2, 1, 6, 1, 4, 1, 4, 1, 4, 1, 9, 1, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 6, 1, 6
Offset: 1

Author

Wesley Ivan Hurt, Jan 03 2024

Keywords

Comments

Essentially, A000005 interspersed with 1's [prepend 0].
Number of divisors of A057979(n+1) for n >= 2.

Crossrefs

Bisections: A060576, A000005.

Programs

  • Maple
    with(numtheory): 0, seq(2*tau(n) - tau(2*n) + (n mod 2), n=2..100); # Ridouane Oudra, Jan 18 2025
  • Mathematica
    Join[{0}, Table[DivisorSigma[0, (n+2+(n-2)*(-1)^n)/4], {n, 2, 100}]]
  • PARI
    a(n) = if(n == 1, 0, numdiv((n+2+(n-2)*(-1)^n)/4)); \\ Amiram Eldar, Jan 28 2025

Formula

a(n) = A000005(A057979(n+1)) for n >= 2.
a(2n-1) = A060576(n), a(2n) = A000005(n).
a(n) = d(floor((n+1)/2))^((n+1) mod 2), for n >= 2.
a(n) = d( (n+2+(n-2)*(-1)^n)/4 ) for n >= 2.
a(n) = Sum_{k=1..floor(n/2)} c(n/k) * c(floor(n/2)/k), where c(m) = 1 - ceiling(m) + floor(m).
a(n) = A000005(n) - A091954(n), for n > 1. - Ridouane Oudra, Jan 18 2025
Sum_{k=1..n} a(k) ~ (log(n/2) + 2*gamma)*n/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 28 2025
Previous Showing 21-28 of 28 results.