A352056 Sum of the 10th powers of the divisor complements of the odd proper divisors of n.
0, 1024, 59049, 1048576, 9765625, 60467200, 282475249, 1073741824, 3486843450, 10000001024, 25937424601, 61918412800, 137858491849, 289254656000, 576660215299, 1099511627776, 2015993900449, 3570527693824, 6131066257801, 10240001048576, 16680163512499
Offset: 1
Examples
a(10) = 10^10 * Sum_{d|10, d<10, d odd} 1 / d^10 = 10^10 * (1/1^10 + 1/5^10) = 10000001024.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A352056[n_]:=DivisorSum[n,1/#^10&,#
A352056,50] (* Paolo Xausa, Aug 10 2023 *) a[n_] := DivisorSigma[-10, n/2^IntegerExponent[n, 2]] * n^10 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *) -
PARI
a(n) = n^10 * sigma(n >> valuation(n, 2), -10) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^10 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^10 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 19 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^11 / 11, where c = 2047*zeta(11)/2048 = 1.00000566605... . (End)
A293216
a(n) = Product_{d|n, dA260443(d).
1, 2, 2, 6, 2, 36, 2, 30, 12, 108, 2, 2700, 2, 180, 216, 210, 2, 48600, 2, 40500, 360, 1620, 2, 661500, 36, 2700, 1080, 94500, 2, 153090000, 2, 2310, 3240, 3780, 1080, 4465125000, 2, 40500, 5400, 69457500, 2, 34445250000, 2, 21262500, 4082400, 56700, 2, 560290500, 60, 127575000, 7560, 49612500, 2, 1205583750000, 9720, 254677500, 81000, 132300, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1024
Crossrefs
Programs
A293451 Number of proper divisors of n of the form 4k+1.
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 2, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Programs
-
Mathematica
a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
-
PARI
A293451(n) = sumdiv(n,d,(d
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,4) - (2 - gamma)/4 = A256778 - (2 - A001620)/4 = 0.354593... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
A325937 Expansion of Sum_{k>=1} (-1)^(k + 1) * x^(2*k) / (1 - x^k).
0, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1, -1, 1, 1, 3, -2, 1, 1, 1, -1, 3, 1, 1, -3, 2, 1, 3, -1, 1, 1, 1, -3, 3, 1, 3, -2, 1, 1, 3, -3, 1, 1, 1, -1, 5, 1, 1, -5, 2, 1, 3, -1, 1, 1, 3, -3, 3, 1, 1, -3, 1, 1, 5, -4, 3, 1, 1, -1, 3, 1, 1, -5, 1, 1, 5, -1, 3, 1, 1, -5
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest Table[-DivisorSum[n, (-1)^# &, # < n &], {n, 1, 80}]
-
PARI
A325937(n) = -sumdiv(n, d, if(d==n,0,((-1)^d))); \\ Antti Karttunen, Sep 20 2019
Formula
G.f.: Sum_{k>=2} x^k / (1 + x^k).
a(n) = -Sum_{d|n, d
a(n) = A048272(n) + (-1)^n.
A293513 Number of proper divisors of n of the form 4k+3.
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 2, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 1, 0, 0, 2, 1, 2, 2, 0, 0, 2, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 4
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Programs
-
Mathematica
a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
-
PARI
A293513(n) = sumdiv(n,d,(d
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} x^(8*k-2) / (1 - x^(4*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (2 - gamma)/4 = A256846 - (2 - A001620)/4 = -0.430804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
A096157 Numbers whose numbers of odd and even proper divisors differ at most by 1.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 26, 28, 29, 30, 31, 34, 37, 38, 41, 42, 43, 44, 46, 47, 50, 52, 53, 54, 58, 59, 61, 62, 66, 67, 68, 70, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 90, 92, 94, 97, 98, 101, 102, 103, 106, 107, 109, 110, 113
Offset: 1
Keywords
Comments
A union of 1, 4, primes, quadrupled primes, and all numbers of the form 4k+2. - Ivan Neretin, Aug 12 2015
Examples
Proper divisors of 42 are {1,2,3,6,7,14,21}: 4=#{1,3,7,21} are odd and 3=#{2,6,14} are even, as abs(4-3)=1, 42 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> if n::odd then isprime(n) elif n mod 4 = 0 then isprime(n/4) else true fi: filter(1):= true: filter(4):= true: select(filter, [$1..1000]); # Robert Israel, Aug 12 2015
-
Mathematica
okQ[n_] := With[{dd = Most[Divisors[n]]}, Abs[2 Count[dd, _?OddQ] - Length[dd]] <= 1]; Select[Range[1000], okQ] (* Jean-François Alcover, Dec 16 2021 *)
-
PARI
is(n)=if(bittest(n,0),isprime(n),bittest(n,1)||isprime(n>>2))||n<9 \\ M. F. Hasler, Aug 13 2015
A096158 Number of permutations of proper divisors of n such that the sum of adjacent pairs of divisors is prime.
0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
Proper divisors of n=12 are {1,2,3,4,6}: [2,3,4,1,6]->(2+3,3+4,4+1,1+6)=(5,7,5,7), [4,3,2,1,6]->(4+3,3+2,2+1,1+6)=(7,5,3,7), [6,1,2,3,4]->(6+1,1+2,2+3,3+4)=(7,3,5,7) and [6,1,4,3,2]->(6+1,1+4,4+3,3+2)=(7,5,7,5): therefore a(12)=4.
A368684 Number of partitions of n into 2 parts such that the smaller part divides both n and floor(n/2).
0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 8, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 1, 8, 1, 2, 1, 6, 1, 4, 1, 4, 1, 4, 1, 9, 1, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 6, 1, 6
Offset: 1
Comments
Programs
-
Maple
with(numtheory): 0, seq(2*tau(n) - tau(2*n) + (n mod 2), n=2..100); # Ridouane Oudra, Jan 18 2025
-
Mathematica
Join[{0}, Table[DivisorSigma[0, (n+2+(n-2)*(-1)^n)/4], {n, 2, 100}]]
-
PARI
a(n) = if(n == 1, 0, numdiv((n+2+(n-2)*(-1)^n)/4)); \\ Amiram Eldar, Jan 28 2025
Formula
a(n) = d(floor((n+1)/2))^((n+1) mod 2), for n >= 2.
a(n) = d( (n+2+(n-2)*(-1)^n)/4 ) for n >= 2.
a(n) = Sum_{k=1..floor(n/2)} c(n/k) * c(floor(n/2)/k), where c(m) = 1 - ceiling(m) + floor(m).
Sum_{k=1..n} a(k) ~ (log(n/2) + 2*gamma)*n/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 28 2025
Comments