cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A060302 Decimal expansion of (Pi^4 + Pi^5)^(1/6).

Original entry on oeis.org

2, 7, 1, 8, 2, 8, 1, 8, 0, 8, 6, 1, 1, 9, 1, 5, 2, 5, 7, 6, 0, 4, 2, 0, 2, 2, 5, 8, 4, 2, 0, 4, 1, 9, 8, 3, 2, 5, 3, 7, 0, 6, 7, 1, 3, 9, 1, 9, 3, 9, 3, 1, 3, 2, 3, 2, 5, 6, 8, 5, 0, 2, 9, 9, 8, 8, 1, 4, 9, 4, 9, 9, 5, 4, 4, 9, 0, 2, 1, 8, 3, 4, 9, 2, 7, 1, 6, 2, 9, 7, 2, 0, 7, 4, 7, 9, 0, 2, 1, 6, 8, 8, 0, 0, 6
Offset: 1

Views

Author

Jason Earls, Mar 26 2001

Keywords

Comments

Approximation to e, accurate to 7 decimal places.

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[Pi^4 + Pi^5, 6], 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)
  • PARI
    default(realprecision, 20080); x=(Pi^4 + Pi^5)^(1/6); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060302.txt", n, " ", d)); \\ Harry J. Smith, Jul 03 2009

A196751 Decimal expansion of 8*Pi^4/729.

Original entry on oeis.org

1, 0, 6, 8, 9, 6, 1, 2, 1, 8, 4, 8, 0, 1, 3, 6, 4, 8, 5, 4, 4, 7, 9, 0, 4, 8, 8, 5, 4, 7, 2, 7, 5, 8, 4, 2, 2, 4, 9, 3, 5, 8, 1, 1, 8, 7, 0, 8, 0, 2, 2, 4, 1, 0, 6, 3, 5, 3, 5, 5, 6, 7, 5, 5, 9, 9, 4, 1, 9, 3, 2, 0, 1, 1, 7, 2, 3, 1, 4, 9, 1, 0, 1, 7, 9, 6, 6, 3, 8, 3
Offset: 1

Views

Author

R. J. Mathar, Oct 06 2011

Keywords

Examples

			1.0689612184801364854479048854727584224935811870802241063535...
		

Crossrefs

Cf. A092425.

Programs

Formula

Equals Sum_{n>=1} A011655(n)/n^4. See Mathar link, L(m=3,r=1,s=4).

A257134 Decimal expansion of Pi^4/45.

Original entry on oeis.org

2, 1, 6, 4, 6, 4, 6, 4, 6, 7, 4, 2, 2, 2, 7, 6, 3, 8, 3, 0, 3, 2, 0, 0, 7, 3, 9, 3, 0, 8, 2, 3, 3, 5, 8, 0, 5, 5, 4, 9, 5, 0, 1, 9, 0, 3, 8, 3, 7, 4, 5, 3, 8, 1, 5, 3, 6, 5, 9, 5, 2, 4, 3, 0, 8, 8, 8, 2, 4, 1, 2, 3, 2, 3, 7, 3, 9, 3, 7, 6, 9, 3, 1, 1, 3, 8, 1, 9, 2, 7, 1, 8, 8, 3, 3, 9, 9, 8, 3, 4, 4, 6, 5, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2015

Keywords

Examples

			2.16464646742227638303200739308233580554950190383745381536595243...
		

References

  • L. J. P. Kilford, Modular Forms: A Classical and Computational Introduction, Imperial College Press, 2008, p. 15.

Crossrefs

Programs

Formula

Pi^4/45 = 2*zeta(4) = G_4(oo), where the function G_k(z) is the Eisenstein nonzero modular form of weight k.
Equals -Integral_{x=0..1} log(x)^2 * log(1 - x)/x dx. - Amiram Eldar, Jul 21 2020
Equals Sum_{n,m>=1} (Pi^2/6 - Sum_{k=1..n+m} 1/k^2)/(n*m) (Tissier, 1999). - Amiram Eldar, Jan 27 2024
Equals Integral_{x=0..1} Li(3,sqrt(x))/x dx, where Li(n,x) is the polylogarithm function. - Kritsada Moomuang, Jun 18 2025
Equals 2*A013662 = A231535/3. - Hugo Pfoertner, Jun 18 2025

A383647 Decimal expansion of 15/(2*Pi^4).

Original entry on oeis.org

0, 7, 6, 9, 9, 4, 8, 6, 6, 9, 1, 0, 1, 3, 2, 5, 1, 3, 9, 1, 8, 6, 4, 5, 8, 7, 4, 5, 0, 3, 3, 9, 0, 2, 0, 6, 0, 6, 3, 7, 0, 8, 5, 1, 3, 9, 0, 2, 2, 8, 6, 9, 7, 0, 3, 8, 6, 2, 6, 0, 2, 6, 6, 0, 3, 9, 8, 0, 2, 4, 7, 0, 0, 6, 6, 6, 3, 9, 4, 0, 1, 8, 6, 8, 0, 4, 2, 8, 6, 4, 4, 7, 1, 4, 6, 7, 8, 6, 7, 9, 2
Offset: 0

Views

Author

Stefano Spezia, May 03 2025

Keywords

Examples

			0.07699486691013251391864587450339020606370851390...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 64.

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[15/(2Pi^4),10,100][[1]]]

Formula

Equals Sum_{n > 0} 1/A030059(n)^4.
Equals 10/A151927. - Hugo Pfoertner, May 03 2025

A194657 Decimal expansion of (4*Pi^6*log(2) - 90*Pi^4*zeta(3) + 1350*Pi^2*zeta(5) - 5715*zeta(7))/1536.

Original entry on oeis.org

1, 1, 7, 5, 7, 5, 8, 3, 4, 0, 7, 2, 3, 3, 2, 4, 8, 2, 0, 6, 2, 4, 2, 9, 0, 6, 7, 9, 4, 9, 1, 4, 7, 5, 8, 4, 3, 3, 4, 1, 6, 4, 3, 8, 9, 9, 8, 1, 6, 2, 9, 0, 8, 8, 8, 6, 9, 5, 3, 0, 2, 4, 7, 6, 4, 9, 1, 9, 1, 2, 8, 4, 2, 7, 1, 5, 5, 9, 4, 7, 1, 1, 8, 2, 6, 8, 8, 8, 9, 0, 0, 3, 1, 4, 1, 1, 5, 9, 4, 4, 7, 1, 9, 9, 4
Offset: 0

Views

Author

Seiichi Kirikami, Sep 01 2011

Keywords

Comments

The absolute value of the integral {x=0..Pi/2} x^5*log(sin(x )) dx or (d^5/da^5 (integral {x=0..Pi/2} sin(ax)*log(sin(x )) dx)) at a=0. The absolute value of m=2 of (-1)^(m+1)*(sum {n=1..infinity} (limit {a -> 0} (d^(2m+1)/da^(2m+1) ((1-cos((a+2n)*Pi/2))/n/(a+2n)))))-(pi/2)^2(m+1)*log(2)/2/(m+1).

Examples

			0.11757583407233248206...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 1.441.2

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[(4 Pi^6*Log[2]-90 Pi^4*Zeta[3]+1350 Pi^2*Zeta[5]-5715 Pi^2*Zeta[7])/1536,150]][[1]]

Formula

Equals (4*A092732*A002162-90*A092425*A002117+1350*A002388*A013663-5715*A013665)/1536.

A277117 Decimal expansion of e^6/(Pi^5+Pi^4), where e = exp(1).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 4, 3, 8, 0, 8, 1, 0, 7, 6, 2, 9, 9, 4, 7, 6, 3, 7, 4, 3, 2, 0, 1, 2, 2, 8, 9, 0, 0, 5, 8, 1, 9, 0, 4, 0, 9, 2, 1, 5, 3, 0, 6, 0, 3, 6, 9, 5, 9, 2, 3, 3, 5, 2, 0, 0, 4, 8, 6, 4, 3, 9, 0, 0, 0, 6, 1, 4, 3, 7, 1, 5, 8, 8, 9, 8, 2, 6, 5, 2, 5, 4, 8, 5, 3, 2, 4, 4, 1, 6, 8, 9, 9, 7, 5, 8, 3, 8, 6
Offset: 1

Views

Author

Keywords

Examples

			1.0000000438081076299476374320122890058190409215306036959233520...
		

References

  • D. Wilson, pers. comm.

Crossrefs

Programs

  • Mathematica
    RealDigits[E^6/(Pi^5+Pi^4),10,120][[1]] (* Harvey P. Dale, Apr 07 2019 *)
  • PARI
    exp(6)/(Pi^5+Pi^4) \\ Michel Marcus, Oct 02 2016

Formula

Equals A092512 /(A092731 + A092425).

A376994 Decimal expansion of Pi^4 + Pi^5.

Original entry on oeis.org

4, 0, 3, 4, 2, 8, 7, 7, 5, 8, 1, 9, 2, 8, 3, 8, 9, 0, 4, 9, 9, 1, 8, 1, 6, 4, 2, 7, 3, 2, 1, 4, 0, 7, 1, 7, 7, 3, 0, 0, 2, 8, 2, 9, 2, 3, 0, 0, 7, 6, 0, 4, 1, 2, 2, 4, 4, 9, 6, 0, 3, 0, 3, 0, 7, 6, 2, 0, 5, 8, 4, 7, 5, 9, 0, 4, 4, 1, 2, 2, 0, 6, 7, 5, 9, 0, 5, 3, 6, 7, 7, 0, 8, 2, 5, 8, 1, 1, 1, 4
Offset: 3

Views

Author

Stefano Spezia, Oct 12 2024

Keywords

Comments

This constant is very close to e^6 = A092512.

Examples

			403.4287758192838904991816427321407177300282923...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4+Pi^5,10,100][[1]]

A377647 Decimal expansion of Pi^4/15 + Pi^2*log(2)^2/4 - log(2)^4/4 - 21*log(2)*zeta(3)/4 - 6*Li_4(1/2).

Original entry on oeis.org

1, 4, 2, 5, 1, 4, 1, 9, 7, 9, 3, 5, 7, 1, 0, 9, 1, 5, 7, 0, 8, 7, 2, 1, 5, 0, 1, 2, 0, 9, 6, 5, 2, 1, 6, 0, 8, 9, 5, 4, 6, 3, 4, 1, 0, 7, 6, 4, 1, 0, 9, 2, 3, 7, 9, 9, 4, 8, 6, 5, 5, 8, 4, 5, 4, 9, 8, 7, 9, 0, 5, 8, 1, 7, 9, 7, 8, 7, 7, 9, 4, 4, 6, 0, 3, 6, 9, 8, 3, 3, 5, 8, 6, 8, 2, 8, 1, 0, 4, 3
Offset: 0

Views

Author

Stefano Spezia, Nov 03 2024

Keywords

Examples

			0.142514197935710915708721501209652160895463410764...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.8, p. 47.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4/15+Pi^2Log[2]^2/4-Log[2]^4/4-21Log[2]Zeta[3]/4-6PolyLog[4,1/2],10,100][[1]]

Formula

Integral_{x=1..2} log(x)^3/(x - 1) [Levin] (see Finch).
Integral_{x=0..1} log(1 + x)^3/x (see Shamos).
Previous Showing 21-28 of 28 results.