cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A208933 Expansion of phi(q^4) / phi(-q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 48, 80, 128, 202, 312, 472, 704, 1036, 1504, 2160, 3072, 4324, 6036, 8360, 11488, 15680, 21264, 28656, 38400, 51182, 67864, 89552, 117632, 153836, 200352, 259904, 335872, 432480, 554952, 709728, 904784, 1149916, 1457136, 1841200, 2320128
Offset: 0

Views

Author

Michael Somos, Mar 13 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 16*q^4 + 28*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^4] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Apr 25 2015 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(8*k))^5 / ((1-x^k)^2 * (1-x^(4*k))^2 * (1-x^(16*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^16 + A))^2, n))};

Formula

Expansion of eta(q^2) * eta(q^8)^5 / (eta(q) * eta(q^4) * eta(q^16))^2 in powers of q.
Euler transform of period 16 sequence [ 2, 1, 2, 3, 2, 1, 2, -2, 2, 1, 2, 3, 2, 1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208603.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2*u - 1) * (2*v^2 - 2*v + 1) - u^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = 4 * u * (u - 1) * (2*u - 1) * v * (v - 1) * (2*v - 1) - (u - v)^4.
(-1)^n * a(n) = A112128(n). a(n) = 2 * A123655(n) unless n=0. 2 * a(n) = A007096(n) unless n=0. a(2*n) = A131126(n). a(2*n + 1) = 2 * A093160(n). Convolution inverse of A208604.
G.f.: (Sum_{k in Z} x^(4 * k^2)) / (Sum_{k in Z} (-1)^k * x^(k^2)) = theta_3(x^4) / theta_3(-x).
G.f.: Product_{k>0} ((1 + x^(2*k)) * (1 + x^(4*k)))^3 / ((1 + (-x)^k) * (1 + x^(8*k)))^2.
a(n) ~ exp(sqrt(n)*Pi) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015

A285927 Expansion of (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 19, 42, 81, 155, 276, 486, 821, 1368, 2214, 3541, 5544, 8586, 13082, 19740, 29403, 43414, 63423, 91935, 132075, 188418, 266733, 375232, 524331, 728514, 1006216, 1382604, 1889739, 2570719, 3480420, 4691682, 6297102, 8418252, 11209347, 14870970
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2017

Keywords

Crossrefs

(Product_{k>0} (1 - x^(m*k)) / (1 - x^k))^m: A022567 (m=2), this sequence (m=3), A093160 (m=4), A285928 (m=5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 - x^(3*k)) / (1 - x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 30 2017 *)

Formula

a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A046913(k)*a(n-k) for n > 0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(7/4) * n^(3/4)). - Vaclav Kotesovec, Apr 30 2017

A189925 Expansion of theta_4/theta_3 in powers of q.

Original entry on oeis.org

1, -4, 8, -16, 32, -56, 96, -160, 256, -404, 624, -944, 1408, -2072, 3008, -4320, 6144, -8648, 12072, -16720, 22976, -31360, 42528, -57312, 76800, -102364, 135728, -179104, 235264, -307672, 400704, -519808, 671744, -864960, 1109904
Offset: 0

Views

Author

Michael Somos, May 01 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Baker [1890] page 94 is equation (1): sqrt(cos theta) = [[...]] = 1 - 4q + 8q^2 -[[...]] where cos theta = k'. - Michael Somos, Dec 31 2023

Examples

			G.f. = 1 - 4*q + 8*q^2 - 16*q^3 + 32*q^4 - 56*q^5 + 96*q^6 - 160*q^7 + 256*q^8 + ...
		

References

  • Arthur L. Baker, Elliptic Functions, John Wiley & Sons, NY, 1890.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^2 / (1+x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    With[{nmax = 50}, CoefficientList[Series[4 QPochhammer[-1, x^2]^2/QPochhammer[-1, x]^4, {x, 0, nmax}], x]] (* Jan Mangaldan, Jan 04 2017 *)
    With[{nmax = 50}, CoefficientList[Series[EllipticTheta[4, 0, x]/EllipticTheta[3, 0, x], {x, 0, nmax}], x]] (* Jan Mangaldan, Jan 04 2017 *)
    a[ n_] :=  SeriesCoefficient[(1 - InverseEllipticNomeQ[x])^(1/4), {x, 0, n}]; (* Michael Somos, Dec 31 2023 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^2 * eta(x^4 + A) / eta(x^2 + A)^3 )^2, n))};

Formula

Expansion of eta(q)^4 * eta(q^4)^2 / eta(q^2)^6 in powers of q.
Expansion of Jacobian elliptic function sqrt(k') in powers of q.
Expansion of phi(-q) / phi(q) = chi(-q)^2 / chi(q)^2 = psi(-q)^2 / psi(q)^2 = phi(-q)^2 / phi(-q^2)^2 = phi(-q^2)^2 / phi(q)^2 = chi(-q)^4 / chi(-q^2)^2 = chi(-q^2)^2 / chi(q)^4 = f(-q)^2 / f(q)^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ -4, 2, -4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 * (u^2 + 1) - 2*u.
Unique solution to f(x^2)^(-2) = (f(x) + 1/f(x)) / 2 and f(0) = 1, f'(0) nonzero.
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A079006.
G.f.: theta_4 / theta_3 = (Sum_{k} (-x)^k^2)/(Sum_{k} x^k^2) = (Product_{k>0} ((1 - x^(4*k - 1)) * (1 - x^(4*k - 3)))^2 / (1 - x^(4*k - 2)))^2.
Convolution inverse of A007096. a(n) = (-1)^n * A007096(n). a(2*n) = A014969(n). a(2*n + 1) = -4 * A093160(n). a(4*n) = A097243(n). a(4*n + 2) = 8*A022577(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n))/(2^(5/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
G.f.: exp(-4*Sum_{k>=1} sigma(2*k - 1)*x^(2*k-1)/(2*k - 1)). - Ilya Gutkovskiy, Apr 19 2019

A295831 Expansion of Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 19, 30, 47, 76, 118, 181, 277, 417, 624, 929, 1367, 2001, 2913, 4210, 6056, 8665, 12328, 17466, 24640, 34600, 48395, 67442, 93625, 129520, 178588, 245429, 336252, 459324, 625613, 849762, 1151150, 1555378, 2096332, 2818630, 3780903, 5060240, 6757633, 9005106, 11975265
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 44; CoefficientList[Series[Exp[Sum[x^k (1 - (-1)^k x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.
G.f.: exp(Sum_{k>=1} x^k*(1 - (-1)^k*x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3*(7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (12 * (7*Zeta(3))^(1/3)) - Pi^4 / (3024*Zeta(3)) - 1/24) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(11/8) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A208605 Expansion of q * psi(q^8) / phi(q) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 4, -8, 14, -24, 40, -64, 101, -156, 236, -352, 518, -752, 1080, -1536, 2162, -3018, 4180, -5744, 7840, -10632, 14328, -19200, 25591, -33932, 44776, -58816, 76918, -100176, 129952, -167936, 216240, -277476, 354864, -452392, 574958, -728568, 920600
Offset: 1

Views

Author

Michael Somos, Feb 29 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			q - 2*q^2 + 4*q^3 - 8*q^4 + 14*q^5 - 24*q^6 + 40*q^7 - 64*q^8 + 101*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^2* eta[q^4]^2*eta[q^16]^2/(eta[q^2]^5*eta[q^8]), {q, 0, n}]; Table[a[n], {n,1,50}] (* G. C. Greubel, Jan 23 2018 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)^2 / (eta(x^2 + A)^5 * eta(x^8 + A)), n))}

Formula

Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^16)^2 / (eta(q^2)^5 * eta(q^8)) in powers of q.
Euler transform of period 16 sequence [ -2, 3, -2, 1, -2, 3, -2, 2, -2, 3, -2, 1, -2, 3, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 1/4 * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208603.
a(n) = -(-1)^n * A123655(n). a(2*n) = -2 * A107035(n). a(2*n + 1) = A093160(n). Convolution inverse of A208603.

A296068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 4, 0, 1, 5, 14, 22, 18, 6, 0, 1, 6, 20, 40, 48, 32, 9, 0, 1, 7, 27, 65, 101, 99, 55, 12, 0, 1, 8, 35, 98, 185, 236, 194, 90, 16, 0, 1, 9, 44, 140, 309, 481, 518, 363, 144, 22, 0, 1, 10, 54, 192, 483, 882, 1165, 1080, 657, 226, 29, 0, 1, 11, 65, 255, 718, 1498, 2330, 2665, 2162, 1155, 346, 38, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 8)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 59*k + 18)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 215*k^2 + 330*k + 144)*x^5 + ...
Square array begins:
1,  1,   1,   1,    1,    1,  ...
0,  1,   2,   3,    4,    5,  ...
0,  2,   5,   9,   14,   20,  ...
0,  3,  10,  22,   40,   65,  ...
0,  4,  18,  48,  101,  185,  ...
0,  6,  32,  99,  236,  481,  ...
		

Crossrefs

Main diagonal gives A296044.
Antidiagonal sums give A302020.
Cf. A296067.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i))/(1 - x^(2 i - 1)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[((1 - x^(4 i))/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[2^(-k/2) (EllipticTheta[2, 0, x]/(x^(1/8) EllipticTheta[2, Pi/4, Sqrt[x]]))^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.
G.f. of column k: Product_{j>=1} ((1 - x^(4*j))/(1 - x^j))^k.
G.f. of column k: 2^(-k/2)*(theta_2(0,x)/(x^(1/8)*theta_2(Pi/4,sqrt(x))))^k, where theta_() is the Jacobi theta function.

A304625 a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 0, 3, 19, 101, 501, 2486, 12398, 62329, 315436, 1605330, 8207552, 42124368, 216903051, 1119974861, 5796944342, 30068145889, 156250892593, 813310723907, 4239676354631, 22130265931880, 115654632452514, 605081974091853, 3168828466966365, 16610409114771876, 87141919856550506
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Number of partitions of n into 2 or more parts of n kinds. - Ilya Gutkovskiy, May 16 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724... and c = 0.268015212710733315686... - Vaclav Kotesovec, May 16 2018

A326827 Expansion of 1 / (chi(-x)^10 * chi(-x^2)^4) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 10, 59, 270, 1045, 3582, 11194, 32488, 88716, 230150, 571363, 1365148, 3153522, 7069242, 15425719, 32849906, 68421073, 139645914, 279740407, 550790788, 1067244261, 2037348726, 3835457084, 7126887974, 13081454919, 23735283778, 42598577587, 75668099822
Offset: 0

Views

Author

Michael Somos, Oct 20 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 10*x + 59*x^2 + 270*x^3 + 1045*x^4 + 3582*x^5 + 11194*x^6 + ...
G.f. = q^3 + 10*q^7 + 59*q^11 + 270*q^15 + 1045*q^19 + 3582*q^23 + 11194*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^3 QPochhammer[ x^4]^2 / (QPochhammer[ x]^5))^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ x^(-3/4) (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]^2 / 4)^2, {x, 0, n}];
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^10/(1 - x^(4*k - 2))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 31 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^5)^2, n))};

Formula

Expansion of q^(-3/4) * (eta(q^2)^3 * eta(q^4)^2 / eta(q)^5)^2 in powers of q.
Euler transform of period 4 sequence [10, 4, 10, 0, ...].
G.f.: Product_{n>=0} (1 - x^(2*n + 1))^-10 * (1 - x^(4*n + 2))^-4.
A093160(2*n + 1) = A123655(4*n + 3) = 4*a(n).
A232772(2*n + 1) = A215348(4*n + 3) = A215349(4*n + 3) = 8*a(n).
A007096(4*n + 3) = A212318(4*n + 3) = 16*a(n). A189925(4*n + 3) = A232358(4*n + 3) = -16*a(n).
a(n) ~ exp(2*Pi*sqrt(n)) / (256*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
Previous Showing 11-18 of 18 results.