cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A374143 a(n) is the smallest number which can be represented as the sum of two distinct nonzero octagonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

9, 1053, 12641, 68141, 365641, 953181, 2830641, 6232341, 13969041, 23211261, 104733741, 84994021, 175873641, 159851141, 538547641, 602713041, 810204416, 1019740041, 1053265741, 1972957241, 3339356041, 5914492241, 6886737541, 6388758241, 8902368041, 7858982841, 4942246941, 18439299341, 26639916441
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(2) = 1053 = 8 + 1045 = 408 + 645.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(29) from Michael S. Branicky, Jun 29 2024

A374144 a(n) is the smallest number which can be represented as the sum of two distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

81, 1105, 205427, 483031, 9402323, 6232341, 79324200, 768459127, 2265692766, 2413112833, 6737406626, 150437989675, 45319359337, 15140186701
Offset: 3

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(3) = 81 = 3 + 78 = 15 + 66 = 36 + 45.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(16) from Michael S. Branicky, Jun 30 2024

A374095 a(n) is the smallest nonnegative integer k where exactly n solutions to x^2 + 3*x*y + y^2 = k with 0 < x < y.

Original entry on oeis.org

0, 11, 209, 2299, 6061, 278179, 66671, 5285401, 187891, 1266749, 8067191
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A374093(k) = n.

Crossrefs

A374226 a(n) is the smallest number which can be represented as the sum of two distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

3, 65, 87539319
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 87539319 = 167^3 + 436^3 = 228^3 + 423^3 = 255^3 + 414^3.
		

Crossrefs

A374287 a(n) is the smallest number which can be represented as the sum of n distinct nonzero squares in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 65, 62, 90, 103, 136, 200, 276, 376, 481, 625, 806, 975, 1183, 1415, 1688, 1989, 2325, 2698, 3110, 3563, 4059, 4600, 5188, 5825, 6513, 7254, 8050, 8903, 9815, 10788, 11824, 12925, 14093, 15330, 16638, 18019, 19475, 21008, 22620, 24313, 26089, 27950, 29898
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(2) = 65 = 1^2 + 8^2 = 4^2 + 7^2.
a(3) = 62 = 1^2 + 5^2 + 6^2 = 2^2 + 3^2 + 7^2.
		

Crossrefs

Extensions

a(12) and beyond from Michael S. Branicky, Jul 02 2024

A365295 a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.

Original entry on oeis.org

1, 5, 17, 129, 468, 1025, 2628, 12025, 32045, 27625, 138125, 430625, 204425, 160225, 2010025, 2348125, 801125, 1743625, 2082925, 4978025, 4005625, 12325625, 30525625, 73046025, 5928325, 13287625, 46437625, 45177925, 35409725, 120737825, 52073125, 66438125, 29641625, 32846125, 956974625
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2023

Keywords

Examples

			For n = 2: a(2) = 17 = 1^2 + 2^4 = 2^3 + 3^2.
a(6) = 2628 via 3^3 + 51^2 = 2^7 + 50^2 = 18^2 + 48^2 = 21^2 + 3^7 = 2^9 + 46^2 = 30^2 + 12^3. - _David A. Corneth_, Sep 09 2023
		

Crossrefs

Programs

  • PARI
    upto(n) = {n = (sqrtint(n) + 1)^2; my(v = vector(n), pows = List([1]), r = -1, res = []); for(j = 2, logint(n, 2), for(i = 2, sqrtnint(n, j), listput(pows, i^j))); pows = Set(pows); for(i = 1, #pows - 1, j = i+1; c = pows[i] + pows[j]; while(c <= n, v[c]++; j++; c = pows[i] + pows[j])); for(i = 1, #v, c = v[i]+1; if(c > #res, res = concat(res, vector(c - #res, j, oo))); if(i < res[c], res[c] = i)); res} \\ David A. Corneth, Sep 08 2023
    
  • PARI
    \\ see link
    
  • Python
    # see link

Extensions

a(8)-a(10) from David Consiglio, Jr., Sep 08 2023
a(9) corrected and a(11)-a(34) from Hugo Pfoertner, Sep 10 2023
Previous Showing 11-16 of 16 results.