A095722
E.g.f.: exp(x)/(1-x)^8.
Original entry on oeis.org
1, 9, 89, 961, 11265, 142601, 1940089, 28245729, 438351041, 7226001865, 126122874201, 2324074591169, 45094140207169, 919088049256521, 19633713260950265, 438708172312264801, 10234490436580101249
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^8,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 26 2013 *)
Table[HypergeometricPFQ[{8, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
A381021
Expansion of e.g.f. log(1-x)^2 * exp(x) / 2.
Original entry on oeis.org
0, 0, 1, 6, 29, 145, 814, 5243, 38618, 321690, 2995011, 30840304, 348114711, 4274888891, 56744495872, 809667333733, 12358833406580, 200955441549140, 3467781770502885, 63298198354605210, 1218507112218768721, 24671782054230662277, 524152965820457130290
Offset: 0
-
nmax=22; CoefficientList[Series[Log[1-x]^2*Exp[x]/2,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Feb 12 2025 *)
-
a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(k, 2, 1)));
A095740
E.g.f.: exp(x)/(1-x)^9.
Original entry on oeis.org
1, 10, 109, 1288, 16417, 224686, 3288205, 51263164, 848456353, 14862109042, 274743964621, 5346258202000, 109249238631169, 2339328151461718, 52384307381414317, 1224472783033479556, 29826054965115774145
Offset: 0
-
seq(simplify(hypergeom([9,-n],[],-1)),n=0..30); # Robert Israel, May 27 2016
-
Table[HypergeometricPFQ[{9, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
A381023
Expansion of e.g.f. log(1-x)^4 * exp(x) / 24.
Original entry on oeis.org
0, 0, 0, 0, 1, 15, 160, 1575, 15659, 163191, 1809905, 21474255, 272757166, 3703523824, 53631736795, 826097224680, 13497286183354, 233291225507890, 4254733292942982, 81680724157089634, 1646873959921840191, 34800264421134754997, 769198023696181428250, 17751664780107823096301
Offset: 0
-
nmax=23; CoefficientList[Series[Log[1-x]^4*Exp[x]/24, {x, 0, nmax}], x]Range[0, nmax]! (* Stefano Spezia, Feb 12 2025 *)
-
a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(k, 4, 1)));
A346844
E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^5 / 5!.
Original entry on oeis.org
1, 21, 287, 3290, 34671, 350889, 3492511, 34669734, 346231886, 3497726232, 35872743270, 374387203190, 3982122624117, 43207791878715, 478532965417529, 5411213661200830, 62482405993313229, 736696756305382411, 8868148033487285103, 108969560832001750716
Offset: 5
-
b:= proc(n, m) option remember;
`if`(n=0, binomial(m, 5), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=5..24); # Alois P. Heinz, Aug 05 2021
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^5/5!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
Table[Sum[StirlingS2[n, k] Binomial[k, 5], {k, 0, n}], {n, 5, 24}]
Table[Sum[Binomial[n, k] StirlingS2[k, 5] BellB[n - k], {k, 0, n}], {n, 5, 24}]
Table[(-BellB[n] + 89*BellB[n+1] - 145*BellB[n+2] + 75*BellB[n+3] - 15*BellB[n+4] + BellB[n+5])/120, {n, 5, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^5/5!)) \\ Michel Marcus, Aug 06 2021
A381082
Triangle T(n,k) read by rows, where the columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=2.
Original entry on oeis.org
1, -2, 1, 4, -3, 1, -8, 8, -3, 1, 16, -18, 11, -2, 1, -32, 44, -20, 15, 0, 1, 64, -80, 94, 5, 25, 3, 1, -128, 272, 56, 294, 105, 49, 7, 1, 256, 112, 1868, 1596, 1169, 392, 98, 12, 1, -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1
Offset: 0
Triangle starts:
[0] 1;
[1] -2, 1;
[2] 4, -3, 1;
[3] -8, 8, -3, 1;
[4] 16, -18, 11, -2, 1;
[5] -32, 44, -20, 15, 0, 1;
[6] 64, -80, 94, 5, 25, 3, 1;
[7] -128, 272, 56, 294, 105, 49, 7, 1;
[8] 256, 112, 1868, 1596, 1169, 392, 98, 12, 1;
[9] -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1;
...
-
T:=(m,n,k)->add(Stirling1(n-i,k)*binomial(n,i)*m^(i)*(-1)^(n-k), i=0..n):
m:=2:seq(print(seq(T(m,n,k), k=0..n)), n=0..9);
A129334
Triangle T(n,k) read by rows: inverse of the matrix PE = exp(P)/exp(1) given in A011971.
Original entry on oeis.org
1, -1, 1, 0, -2, 1, 1, 0, -3, 1, 1, 4, 0, -4, 1, -2, 5, 10, 0, -5, 1, -9, -12, 15, 20, 0, -6, 1, -9, -63, -42, 35, 35, 0, -7, 1, 50, -72, -252, -112, 70, 56, 0, -8, 1, 267, 450, -324, -756, -252, 126, 84, 0, -9, 1, 413, 2670, 2250, -1080, -1890, -504, 210, 120, 0, -10, 1
Offset: 0
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 0, -2, 1;
[3] 1, 0, -3, 1;
[4] 1, 4, 0, -4, 1;
[5] -2, 5, 10, 0, -5, 1;
[6] -9, -12, 15, 20, 0, -6, 1;
[7] -9, -63, -42, 35, 35, 0, -7, 1;
[8] 50, -72, -252, -112, 70, 56, 0, -8, 1;
[9] 267, 450, -324, -756, -252, 126, 84, 0, -9, 1;
First column is
A000587 (Uppuluri Carpenter numbers) which is also the negative of the row sums (=P(n, 1)). Polynomials evaluated at 2 are
A074051, at -1
A109747.
-
P := proc(n,x) option remember; if n=0 then 1 else
x*P(n-1, x) - P(n-1, x+1) fi end:
aRow := n -> seq(coeff(P(n, x), x, k), k = 0..n):
seq(aRow(n), n = 0..10); # Peter Luschny, Apr 15 2022
Comments