cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A243543 Smallest number whose list of divisors contains n distinct digits (in base 10).

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 72, 54, 108
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Finite sequence with 10 terms.

Examples

			a(9) = 54 because 54 is the smallest number whose list of divisors contains 9 distinct digits; the list of divisors of 54: (1, 2, 3, 6, 9, 18, 27, 54) contains 9 distinct digits (1, 2, 3, 4, 5, 6, 7, 8, 9).
		

Crossrefs

Cf. Sequences of numbers n such that list of divisors of n contains k distinct digits: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.

A059436 Smallest number whose set of divisors contains each digit 0-9 at least n times.

Original entry on oeis.org

108, 540, 1140, 1890, 3420, 5460, 7980, 11760, 16380, 23520, 23520, 23760, 38220, 38220, 41580, 41580, 41580, 71820, 71820, 71820, 83160, 83160, 83160, 124740, 124740, 143640, 166320, 166320, 249480, 249480, 249480, 249480, 311220, 335160, 415800, 415800, 415800, 415800, 415800, 415800
Offset: 1

Views

Author

Erich Friedman, Feb 01 2001

Keywords

Examples

			The divisors of 540 are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540 and every digit appears at least twice in this list.
		

Crossrefs

Cf. A027750; subsequence of A095050, A095048.

Programs

  • Haskell
    import Data.List (group, sort)
    a059436 n = head [x | x <- [1..],
       let dds = map length $ group $ sort $ concatMap show $ a027750_row x,
       minimum dds == n, length dds == 10]
    -- Reinhard Zumkeller, Feb 04 2012
  • Mathematica
    T = 0*Range[25]; Do[d = Last /@ Tally@ Flatten[ IntegerDigits /@ Divisors@ n]; If[Length@d == 10, m = Min[25, d]; While[m > 0 && (T[[m]] == 0 || n < T[[m]]), T[[m--]] = n]], {n, 125000}]; T (* Giovanni Resta, May 15 2016 *)
    sded[n_]:=With[{fid=Flatten[IntegerDigits/@Divisors[n]]},If[Length[Union[fid]]==10,{n,Min[ Tally[fid][[;;,2]]]},Nothing]]; Table[SelectFirst[sded/@Range[500000],#[[2]]>k&],{k,0,39}][[;;,1]] (* Harvey P. Dale, Mar 27 2024 *)

Extensions

More terms from David W. Wilson, Aug 31 2001
Offset corrected by R. J. Mathar, Jun 02 2010
a(10)-a(36) corrected by Giovanni Resta, May 15 2016
More terms from Harvey P. Dale, Mar 27 2024

A206159 Numbers needing at most two digits to write all positive divisors in decimal representation.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 22, 31, 33, 41, 55, 61, 71, 77, 101, 113, 121, 131, 151, 181, 191, 199, 211, 311, 313, 331, 661, 811, 881, 911, 919, 991, 1111, 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 3313, 3331, 4111, 4441, 6661, 7177, 7717, 8111, 9199, 10111, 11113
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2012

Keywords

Comments

The terms of A203897 having all divisors in A020449 (in particular, the first 1022 terms) are a subsequence. - M. F. Hasler, May 02 2022
Since 1 and the term itself are divisors, one must only check repdigits and those containing only 1 and another digit. - Michael S. Branicky, May 02 2022

Crossrefs

Cf. A203897 (an "almost subsequence"), A020449 (primes with only digits 0 & 1), A095048 (number of distinct digits in divisors(n)).

Programs

  • Mathematica
    Select[Range[12000],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]<3&] (* Harvey P. Dale, May 03 2022 *)
  • PARI
    select( {is_A206159(n)=#Set(concat([digits(d)|d<-divisors(n)]))<3}, [1..10^4]) \\ M. F. Hasler, May 02 2022
  • Python
    from sympy import divisors
    def ok(n):
        digits_used = set()
        for d in divisors(n, generator=True):
            digits_used |= set(str(d))
            if len(digits_used) > 2: return False
        return True
    print([k for k in range(1, 9000) if ok(k)]) # Michael S. Branicky, May 02 2022
    

Formula

A095048(a(n)) <= 2.

Extensions

Terms corrected by Harvey P. Dale, May 02 2022
Edited by N. J. A. Sloane, May 02 2022

A095049 Number of distinct digits needed to write in decimal representation all positive non-divisors of n that are less than n.

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 5, 4, 6, 6, 10, 6, 10, 9, 9, 9, 10, 9, 10, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2004

Keywords

Comments

a(n) = 10 for n > 20.

Examples

			Set of non-divisors of n=12: {5,7,8,9,10,11}, therefore
a(12)=#{0,1,5,7,8,9}=6.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Flatten[IntegerDigits/@Complement[Range[n],Divisors[ n]]]]],{n,80}] (* Harvey P. Dale, Jan 06 2019 *)
Previous Showing 11-14 of 14 results.