cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 93 results. Next

A368109 Number of ways to choose a binary index of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 3, 3, 3, 3, 6, 6, 6, 6, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

First differs from A367912 at a(52) = 8, A367912(52) = 7.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
Run-lengths are all 4 or 8.

Examples

			The binary indices of binary indices of 20 are {{1,2},{1,3}}, with choices (1,1), (1,3), (2,1), (2,3), so a(20) = 4.
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,1,1), (1,1,3), (1,3,2), (1,3,3), (2,1,2), (2,1,3), (2,3,2), (2,3,3), so a(52) = 8.
		

Crossrefs

All entries appear to belong to A003586.
Positions of ones are A253317.
The version for prime indices is A355741, for multisets A355744.
Choosing a multiset (not sequence) gives A367912, firsts A367913.
Positions of first appearances are A368111, sorted A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Tuples[bpe/@bpe[n]]], {n,0,100}]

Formula

a(n) = Product_{k in A048793(n)} A000120(k).

A372429 Sum of binary indices of prime(n). Sum of positions of ones in the reversed binary expansion of prime(n).

Original entry on oeis.org

2, 3, 4, 6, 7, 8, 6, 8, 11, 13, 15, 10, 11, 13, 16, 15, 18, 19, 10, 13, 12, 17, 15, 17, 14, 17, 19, 20, 21, 19, 28, 11, 13, 15, 17, 19, 21, 17, 20, 22, 22, 23, 29, 16, 19, 21, 23, 30, 24, 25, 26, 31, 27, 33, 10, 15, 17, 19, 18, 19, 21, 19, 23, 26, 25, 28, 23
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Do 2, 3, 4, 7, 12, 14 appear just once?
Are 1, 5, 9 missing?
The above questions hold true up to n = 10^6. - John Tyler Rascoe, May 21 2024

Examples

			The primes together with their binary expansions and binary indices begin:
   2:      10 ~ {2}
   3:      11 ~ {1,2}
   5:     101 ~ {1,3}
   7:     111 ~ {1,2,3}
  11:    1011 ~ {1,2,4}
  13:    1101 ~ {1,3,4}
  17:   10001 ~ {1,5}
  19:   10011 ~ {1,2,5}
  23:   10111 ~ {1,2,3,5}
  29:   11101 ~ {1,3,4,5}
  31:   11111 ~ {1,2,3,4,5}
  37:  100101 ~ {1,3,6}
  41:  101001 ~ {1,4,6}
  43:  101011 ~ {1,2,4,6}
  47:  101111 ~ {1,2,3,4,6}
  53:  110101 ~ {1,3,5,6}
  59:  111011 ~ {1,2,4,5,6}
  61:  111101 ~ {1,3,4,5,6}
  67: 1000011 ~ {1,2,7}
  71: 1000111 ~ {1,2,3,7}
  73: 1001001 ~ {1,4,7}
  79: 1001111 ~ {1,2,3,4,7}
		

Crossrefs

The number instead of sum of binary indices is A014499.
Restriction of A029931 (sum of binary indices) to the primes A000040.
The maximum instead of sum of binary indices is A035100, see also A023506.
Row-sums of A372471.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020.
A056239 adds up prime indices.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A372427 lists numbers whose binary and prime indices have the same sum.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Total[bix[Prime[n]]],{n,100}]

Formula

a(n) = A029931(prime(n)).

A124758 Product of the parts of the compositions in standard order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 4, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; 2*1*1 = 2, so a(11) = 2.
The table starts:
  1
  1
  2 1
  3 2 2 1
  4 3 4 2 3 2 2 1
  5 4 6 3 6 4 4 2 4 3 4 2 3 2 2 1
The 146-th composition in standard order is (3,3,2), with product 18, so a(146) = 18. - _Gus Wiseman_, Apr 03 2020
		

Crossrefs

Cf. A066099, A118851, A011782 (row lengths), A001906 (row sums).
The lengths of standard compositions are given by A000120.
The version for prime indices is A003963.
The version for binary indices is A096111.
Taking the sum instead of product gives A070939.
The sum of binary indices is A029931.
The sum of prime indices is A056239.
Taking GCD instead of product gives A326674.
Positions of first appearances are A331579.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Times@@stc[n],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

For a composition b(1),...,b(k), a(n) = Product_{i=1}^k b(i).
a(A164894(n)) = a(A246534(n)) = n!. - Gus Wiseman, Apr 03 2020
a(A233249(n)) = a(A333220(n)) = A003963(n). - Gus Wiseman, Apr 03 2020
From Mikhail Kurkov, Jul 11 2021: (Start)
Some conjectures:
a(2n+1) = a(n) for n >= 0.
a(2n) = (1 + 1/A001511(n))*a(n) = 2*a(n) + a(n - 2^f(n)) - a(2n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
From the 1st formula for a(2n) we get a(4n+2) = 2*a(n), a(4n) = 2*a(2n) - a(n).
Sum_{k=0..2^n - 1} a(k) = A001519(n+1) for n >= 0.
a((4^n - 1)/3) = A011782(n) for n >= 0.
a(2^m*(2^n - 1)) = m + 1 for n > 0, m >= 0. (End)

A367908 Numbers n such that there is only one way to choose a different binary index of each binary index of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 56, 67, 69, 70, 73, 74, 81, 88, 98, 104, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152, 154, 156, 162, 163, 165, 166, 168
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in exactly one way.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in exactly one way, namely (1,2,3), so 21 is in the sequence.
The terms together with the corresponding set-systems begin:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  17: {{1},{1,3}}
  19: {{1},{2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
		

Crossrefs

These set-systems are counted by A367904.
Positions of 1's in A367905, firsts A367910, sorted firsts A367911.
If there is at least one choice we get A367906, counted by A367902.
If there are no choices we get A367907, counted by A367903.
If there are multiple choices we get A367909, counted by A367772.
The version for MM-numbers of multiset partitions is A368101.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A059201 counts covering T_0 set-systems.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions for axiom, complement A368097.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]==1&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            p = list(product(*[bin_i(k) for k in bin_i(n)]))
            x,c = len(p),0
            for j in range(x):
                if len(set(p[j])) == len(p[j]): c += 1
                if j+1 == x and c == 1: yield(n)
    A367908_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024

Formula

A370636 Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {1,3,4}
                         {2,3,4}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations are counted by A368414/A370814, complement A368413/A370813.
For prime indices we have A370582, differences A370586.
The complement for prime indices is A370583, differences A370587.
The complement is A370637, differences A370589, without ones A370643.
The case of a unique choice is A370638, maxima A370640, differences A370641.
First differences are A370639.
The minimal case of the complement is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367902(n).
Partial sums of A370639.

Extensions

a(19)-a(40) from Alois P. Heinz, Mar 09 2024

A367912 Number of multisets that can be obtained by choosing a binary index of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
The run-lengths are all 4 or 8.

Examples

			The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with multiset choices {1,1,2}, {1,1,3}, {1,2,2}, {1,2,3}, {1,3,3}, {2,2,3}, {2,3,3}, so a(52) = 7.
		

Crossrefs

Positions of ones are A253317.
The version for multisets and divisors is A355733, for sequences A355731.
The version for multisets is A355744, for sequences A355741.
For a sequence of distinct choices we have A367905, firsts A367910.
Positions of first appearances are A367913, sorted A367915.
Choosing a sequence instead of multiset gives A368109, firsts A368111.
Choosing a set instead of multiset gives A368183, firsts A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n,0,100}]

A370637 Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,2,3,4}  {1,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367903(n).
Partial sums of A370589.

Extensions

a(21)-a(34) from Alois P. Heinz, Mar 09 2024

A372427 Numbers whose binary indices and prime indices have the same sum.

Original entry on oeis.org

19, 33, 34, 69, 74, 82, 130, 133, 305, 412, 428, 436, 533, 721, 755, 808, 917, 978, 1036, 1058, 1062, 1121, 1133, 1143, 1341, 1356, 1630, 1639, 1784, 1807, 1837, 1990, 2057, 2115, 2130, 2133, 2163, 2260, 2324, 2328, 2354, 2358, 2512, 2534, 2627, 2771, 2825
Offset: 1

Views

Author

Gus Wiseman, May 01 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 130 are {2,8}, and the prime indices are {1,3,6}. Both sum to 10, so 130 is in the sequence.
The terms together with their prime indices begin:
   19: {8}
   33: {2,5}
   34: {1,7}
   69: {2,9}
   74: {1,12}
   82: {1,13}
  130: {1,3,6}
  133: {4,8}
  305: {3,18}
  412: {1,1,27}
  428: {1,1,28}
The terms together with their binary expansions and binary indices begin:
   19:      10011 ~ {1,2,5}
   33:     100001 ~ {1,6}
   34:     100010 ~ {2,6}
   69:    1000101 ~ {1,3,7}
   74:    1001010 ~ {2,4,7}
   82:    1010010 ~ {2,5,7}
  130:   10000010 ~ {2,8}
  133:   10000101 ~ {1,3,8}
  305:  100110001 ~ {1,5,6,9}
  412:  110011100 ~ {3,4,5,8,9}
  428:  110101100 ~ {3,4,6,8,9}
		

Crossrefs

For length instead of sum we get A071814.
Positions of zeros in A372428.
For maximum instead of sum we have A372436.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],Total[prix[#]]==Total[bix[#]]&]

A372436 Numbers whose binary indices and prime indices have the same maximum.

Original entry on oeis.org

3, 5, 14, 22, 39, 52, 68, 85, 102, 119, 133, 152, 171, 190, 209, 228, 247, 276, 299, 322, 345, 368, 391, 414, 437, 460, 483, 506, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 870, 928, 957, 986, 1015, 1054, 1085, 1116, 1178, 1209, 1240, 1302
Offset: 1

Views

Author

Gus Wiseman, May 04 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Note that a number's binary and prime indices cannot have the same minimum; see A372437.

Examples

			The binary indices of 345 are {1,4,5,7,9}, and the prime indices are {2,3,9}. Both have maximum 9, so 345 is in the sequence.
The terms together with their prime indices begin:
     3: {2}
     5: {3}
    14: {1,4}
    22: {1,5}
    39: {2,6}
    52: {1,1,6}
    68: {1,1,7}
    85: {3,7}
   102: {1,2,7}
   119: {4,7}
   133: {4,8}
   152: {1,1,1,8}
   171: {2,2,8}
The terms together with their binary expansions and binary indices begin:
     3:           11 ~ {1,2}
     5:          101 ~ {1,3}
    14:         1110 ~ {2,3,4}
    22:        10110 ~ {2,3,5}
    39:       100111 ~ {1,2,3,6}
    52:       110100 ~ {3,5,6}
    68:      1000100 ~ {3,7}
    85:      1010101 ~ {1,3,5,7}
   102:      1100110 ~ {2,3,6,7}
   119:      1110111 ~ {1,2,3,5,6,7}
   133:     10000101 ~ {1,3,8}
   152:     10011000 ~ {4,5,8}
   171:     10101011 ~ {1,2,4,6,8}
		

Crossrefs

For length instead of maximum we have A071814.
For sum instead of maximum we have A372427.
Positions of zeros in A372442, for minimum instead of maximum A372437.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[prix[#]]==Max[bix[#]]&]

Formula

A070939(a(n)) = A061395(a(n)).

A372428 Sum of binary indices of n minus sum of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 2, 4, 5, 1, -1, 2, 0, 3, 3, 4, 2, 4, 4, 4, 6, 6, 3, 8, 4, 1, 0, 0, 2, 3, -2, 2, 4, 4, -2, 5, -1, 6, 7, 5, 1, 5, 4, 6, 5, 6, -1, 9, 9, 8, 6, 6, 1, 11, 1, 8, 13, 1, -1, 1, -9, 1, 0, 4, -7, 4, -9, 0, 6, 4, 6, 7, -5, 5, 5, 0, -8
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so a(65) = 8 - 9 = -1.
		

Crossrefs

Positions of zeros are A372427.
For minimum instead of sum we have A372437.
For length instead of sum we have A372441, zeros A071814.
For maximum instead of sum we have A372442, zeros A372436.
Positions of odd terms are A372586, even A372587.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Total[bix[n]]-Total[prix[n]],{n,100}]
  • Python
    from itertools import count, islice
    from sympy import sieve, factorint
    def a_gen():
        for n in count(1):
            b = sum((i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1')
            p = sum(sieve.search(i)[0] for i in factorint(n, multiple=True))
            yield(b-p)
    A372428_list = list(islice(a_gen(), 83)) # John Tyler Rascoe, May 04 2024
    
  • Python
    from sympy import primepi, factorint
    def A372428(n): return int(sum(i for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')-sum(primepi(p)*e for p, e in factorint(n).items())) # Chai Wah Wu, Oct 18 2024

Formula

a(n) = A029931(n) - A056239(n).
Previous Showing 11-20 of 93 results. Next