cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 93 results. Next

A096115 If n = (2^k)-1, a(n) = a((n+1)/2) = k, if n = 2^k, a(n) = a(n-1)+1 = k+1, otherwise a(n) = (A000523(n)+1)*a(A035327(n-1)).

Original entry on oeis.org

1, 2, 2, 3, 6, 6, 3, 4, 12, 24, 24, 12, 8, 8, 4, 5, 20, 40, 40, 60, 120, 120, 60, 20, 15, 30, 30, 15, 10, 10, 5, 6, 30, 60, 60, 90, 180, 180, 90, 120, 360, 720, 720, 360, 240, 240, 120, 30, 24, 48, 48, 72, 144, 144, 72, 24, 18, 36, 36, 18, 12, 12, 6, 7, 42, 84, 84, 126
Offset: 1

Views

Author

Amarnath Murthy, Jun 30 2004

Keywords

Comments

A fractal sequence. For k in range [1,(2^n)-1], a(2^n + k)/a(2^n - k) = n+1. Each n > 1 occurs 2*A045778(n) times in the sequence.

Crossrefs

Permutation of A096111, i.e. a(n) = A096111(A122199(n)-1) [Note the different starting offsets]. Cf. A096113, A052330, A096114, A096116.

Programs

Extensions

Edited, extended and Scheme code added by Antti Karttunen, Aug 25 2006

A121663 a(0) = 1; if n = 2^k, a(n) = k+2, otherwise a(n)=(A000523(n)+2)*a(A053645(n)).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 6, 12, 18, 36, 24, 48, 72, 144, 30, 60, 90, 180, 120, 240, 360, 720, 7, 14, 21, 42, 28, 56, 84, 168, 35, 70, 105, 210, 140, 280, 420, 840, 42, 84, 126, 252, 168, 336, 504, 1008, 210, 420, 630, 1260, 840, 1680
Offset: 0

Views

Author

Antti Karttunen, Aug 25 2006

Keywords

Comments

Each n occurs A045778(n) times in the sequence.

Crossrefs

Bisection of A096111.

Programs

  • Mathematica
    f[0] := 1; f[n_] := If[(b = n - 2^(k = Floor[Log2[n]])) == 0, k + 2, (k + 2)*f[b]]; Table[f[n], {n, 0, 61}] (* Ivan Neretin, May 09 2015 *)
  • Scheme
    (define (A121663 n) (cond ((zero? n) 1) ((pow2? n) (+ 2 (A000523 n))) (else (* (+ 2 (A000523 n)) (A121663 (A053645 n))))))
    (define (pow2? n) (and (> n 0) (zero? (A004198bi n (- n 1)))))

Formula

G.f.: Product_{k>=0} (1 + (k + 2) * x^(2^k)). - Ilya Gutkovskiy, Aug 19 2019

A368185 Sorted list of positions of first appearances in A368183 (number of sets that can be obtained by choosing a different binary index of each binary index).

Original entry on oeis.org

1, 4, 7, 20, 276, 320, 1088, 65856, 66112, 66624
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
      7: {{1},{2},{1,2}}
     20: {{1,2},{1,3}}
    276: {{1,2},{1,3},{1,4}}
    320: {{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
  65856: {{1,2,3},{1,4},{1,5}}
  66112: {{1,2,3},{2,4},{1,5}}
  66624: {{1,2,3},{1,2,4},{1,5}}
		

Crossrefs

For sequences we have A367911, unsorted A367910, firsts of A367905.
Multisets w/o distinctness: A367915, unsorted A367913, firsts of A367912.
Sequences w/o distinctness: A368112, unsorted A368111, firsts of A368109.
Sorted list of positions of first appearances in A368183.
The unsorted version is A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]],{n,1000}];
    Select[Range[Length[c]], FreeQ[Take[c,#-1],c[[#]]]&]

A370644 Number of minimal subsets of {2..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 13, 13, 26, 56, 126, 243, 471, 812, 1438
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(7) = 13 subsets:
  .  .  .  .  .  {2,3,4,5}  {2,4,6}    {2,4,6}
                            {2,3,4,5}  {2,3,4,5}
                            {2,3,5,6}  {2,3,4,7}
                            {3,4,5,6}  {2,3,5,6}
                                       {2,3,5,7}
                                       {2,3,6,7}
                                       {2,4,5,7}
                                       {2,5,6,7}
                                       {3,4,5,6}
                                       {3,4,5,7}
                                       {3,4,6,7}
                                       {3,5,6,7}
                                       {4,5,6,7}
The a(0) = 0 through a(7) = 13 set-systems:
  .  .  .  .  .  {2}{12}{3}{13}  {2}{3}{23}       {2}{3}{23}
                                 {2}{12}{3}{13}   {2}{12}{3}{13}
                                 {12}{3}{13}{23}  {12}{3}{13}{23}
                                 {2}{12}{13}{23}  {2}{12}{13}{23}
                                                  {2}{12}{3}{123}
                                                  {2}{3}{13}{123}
                                                  {12}{3}{13}{123}
                                                  {12}{3}{23}{123}
                                                  {2}{12}{13}{123}
                                                  {2}{12}{23}{123}
                                                  {2}{13}{23}{123}
                                                  {3}{13}{23}{123}
                                                  {12}{13}{23}{123}
		

Crossrefs

The version with ones allowed is A370642, minimal case of A370637.
This is the minimal case of A370643.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]

A371451 Number of connected components of the binary indices of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of prime indices of 805 are {{1,2},{3},{1,4}}, with 2 connected components {{1,2},{1,4}} and {{3}}, so a(805) = 2.
		

Crossrefs

For prime indices of prime indices we have A305079, ones A305078.
Positions of ones are A325118.
Positions of first appearances are A325782.
For prime indices of binary indices we have A371452, ones A371291.
For binary indices of binary indices we have A326753, ones A326749.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[csm[bix/@prix[n]]],{n,100}]
  • PARI
    zero_first_elem_and_bitmask_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2, #ys, if(ys[j]&&(0!=bitand(cs[i], ys[j])), listput(cs, ys[j]); ys[j] = 0)); i++); (ys); };
    A371451(n) = if(1==n, 0, my(cs = apply(p -> primepi(p), factor(n)[, 1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_bitmask_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Jan 29 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 29 2025

A096114 a(1)=1, a(2)=2, a(3*2^k) = 3*2^k, a(3*2^k + i) = 3*2^k + a(3*2^k - i), for i in range [1, 3*2^k - 1].

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 10, 11, 9, 8, 7, 12, 19, 20, 21, 23, 22, 18, 16, 17, 15, 14, 13, 24, 37, 38, 39, 41, 40, 42, 46, 47, 45, 44, 43, 36, 31, 32, 33, 35, 34, 30, 28, 29, 27, 26, 25, 48, 73, 74, 75, 77, 76, 78, 82, 83, 81, 80, 79, 84, 91, 92, 93, 95, 94, 90, 88, 89, 87, 86, 85, 72
Offset: 1

Views

Author

Amarnath Murthy, Jun 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a = {1, 2}; Do[a = Join[a, {3*2^k}, 3*2^k + Reverse[a]], {k, 0, 4}]; a (* Ivan Neretin, Sep 04 2017 *)

Extensions

Edited, extended and Scheme code added by Antti Karttunen, Aug 25 2006

A331579 Position of first appearance of n in A124758 (products of compositions in standard order).

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 64, 34, 36, 66, 1024, 68, 4096, 258, 132, 136, 65536, 146, 262144, 264, 516, 4098
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
       1: (1)
       2: (2)
       4: (3)
       8: (4)
      16: (5)
      18: (3,2)
      64: (7)
      34: (4,2)
      36: (3,3)
      66: (5,2)
    1024: (11)
      68: (4,3)
    4096: (13)
     258: (7,2)
     132: (5,3)
     136: (4,4)
   65536: (17)
     146: (3,3,2)
  262144: (19)
     264: (5,4)
		

Crossrefs

The product of prime indices is A003963.
The sum of binary indices is A029931.
The sum of prime indices is A056239.
Sums of compositions in standard order are A070939.
The product of binary indices is A096111.
All terms belong to A114994.
Products of compositions in standard order are A124758.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    q=Table[Times@@stc[n],{n,1000}];
    Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]

A370643 Number of subsets of {2..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 23, 46, 113, 287, 680, 1546, 3374, 7191, 15008, 30016, 61013, 124354, 252577, 511229, 1031064, 2074281, 4164716, 8350912, 16729473, 33494928, 67034995, 134127390, 268325204, 536737665, 1073581062, 2147162124, 4294458549, 8589210382, 17178890873
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(7) = 23 subsets:
  .  .  .  .  .  {2,3,4,5}  {2,4,6}      {2,4,6}
                            {2,3,4,5}    {2,3,4,5}
                            {2,3,4,6}    {2,3,4,6}
                            {2,3,5,6}    {2,3,4,7}
                            {2,4,5,6}    {2,3,5,6}
                            {3,4,5,6}    {2,3,5,7}
                            {2,3,4,5,6}  {2,3,6,7}
                                         {2,4,5,6}
                                         {2,4,5,7}
                                         {2,4,6,7}
                                         {2,5,6,7}
                                         {3,4,5,6}
                                         {3,4,5,7}
                                         {3,4,6,7}
                                         {3,5,6,7}
                                         {4,5,6,7}
                                         {2,3,4,5,6}
                                         {2,3,4,5,7}
                                         {2,3,4,6,7}
                                         {2,3,5,6,7}
                                         {2,4,5,6,7}
                                         {3,4,5,6,7}
                                         {2,3,4,5,6,7}
		

Crossrefs

The case with ones allowed is A370637, differences A370589.
The minimal case is A370644, with ones A370642.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A371289 Numbers whose binary indices have squarefree product.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 48, 49, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 112, 113, 512, 513, 516, 517, 576, 577, 580, 581, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1040, 1041, 1042
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     0:              0 ~ {}
     1:              1 ~ {1}
     2:             10 ~ {2}
     3:             11 ~ {1,2}
     4:            100 ~ {3}
     5:            101 ~ {1,3}
     6:            110 ~ {2,3}
     7:            111 ~ {1,2,3}
    16:          10000 ~ {5}
    17:          10001 ~ {1,5}
    18:          10010 ~ {2,5}
    19:          10011 ~ {1,2,5}
    20:          10100 ~ {3,5}
    21:          10101 ~ {1,3,5}
    22:          10110 ~ {2,3,5}
    23:          10111 ~ {1,2,3,5}
    32:         100000 ~ {6}
    33:         100001 ~ {1,6}
    48:         110000 ~ {5,6}
    49:         110001 ~ {1,5,6}
    64:        1000000 ~ {7}
    65:        1000001 ~ {1,7}
    66:        1000010 ~ {2,7}
		

Crossrefs

For prime instead of binary indices we have A302505.
For squarefree parts we have A368533, for prime indices A302478.
A005117 lists squarefree numbers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SquareFreeQ[Times@@bpe[#]]&]

A096116 a(1)=1, if n=(2^k)+1, a(n) = k+2, otherwise a(n) = 2+A000523(n-1)+a(2+A035327(n-1)).

Original entry on oeis.org

1, 2, 3, 5, 4, 9, 7, 6, 5, 11, 12, 14, 9, 10, 8, 7, 6, 13, 14, 16, 15, 20, 18, 17, 11, 12, 13, 15, 10, 11, 9, 8, 7, 15, 16, 18, 17, 22, 20, 19, 18, 24, 25, 27, 22, 23, 21, 20, 13, 14, 15, 17, 16, 21, 19, 18, 12, 13, 14, 16, 11, 12, 10, 9, 8, 17, 18, 20, 19, 24, 22, 21, 20, 26
Offset: 1

Views

Author

Amarnath Murthy, Jun 30 2004

Keywords

Comments

Each n > 1 occurs A025147(n) times in the sequence.

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, If[BitAnd[n - 1, n - 2] == 0, Log2[n - 1] + 2, 2 + Floor[Log2[n - 1]] + a[[2 + BitXor[n - 1, 2^Ceiling[Log2[n]] - 1]]]]], {n, 2, 74}]; a (* Ivan Neretin, Jun 24 2016 *)
  • Scheme
    (define (A096116 n) (cond ((= 1 n) 1) ((pow2? (- n 1)) (+ 2 (A000523 (- n 1)))) (else (+ 2 (A000523 (- n 1)) (A096116 (+ 2 (A035327 (- n 1))))))))
    (define (pow2? n) (and (> n 0) (zero? (A004198bi n (- n 1)))))
    ;; Antti Karttunen, Aug 25 2006

Extensions

Edited and extended by Antti Karttunen, Aug 25 2006
Previous Showing 61-70 of 93 results. Next