cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A265069 Coordination sequence for (2,6,6) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 5, 8, 13, 21, 32, 47, 71, 108, 163, 245, 368, 555, 837, 1260, 1897, 2857, 4304, 6483, 9763, 14704, 22147, 33357, 50240, 75667, 113965, 171648, 258525, 389373, 586448, 883271, 1330327, 2003652, 3017771, 4545173, 6845648, 10310475, 15528973, 23388740, 35226617, 53056065, 79909632, 120354747, 181270579, 273018088
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^5 + x^4 + x^3 + x^2 + x + 1) (x + 1)/(x^6 - x^5 - x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    Vec((x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^3-x+1) + O(x^50)) \\ Michel Marcus, Dec 30 2015

Formula

G.f.: (x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^3-x+1).

A265070 Coordination sequence for (2,6,infinity) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 5, 8, 13, 21, 33, 51, 80, 126, 198, 311, 488, 766, 1203, 1889, 2966, 4657, 7312, 11481, 18027, 28305, 44443, 69782, 109568, 172038, 270125, 424136, 665956, 1045649, 1641823, 2577904, 4047689, 6355468, 9979021, 15668533, 24601905, 38628615, 60652616, 95233542, 149530690, 234785211, 368647368, 578830674
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,5,8,13,21,33]; [n le 7 select I[n] else Self(n-1)+Self(n-3)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Mathematica
    CoefficientList[Series[-(x^5 + x^4 + x^3 + x^2 + x + 1) (x + 1)/(x^5 + x^3 + x - 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x+1)*(x^5+x^4+x^3+x^2+x+1)/(1-x-x^3-x^5)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: -(x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^5+x^3+x-1).
a(n) = a(n-1)+a(n-3)+a(n-5) for n>6. - Vincenzo Librandi, Dec 30 2015

A265071 Coordination sequence for (3,3,4) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 31, 44, 62, 87, 122, 171, 240, 336, 471, 660, 925, 1296, 1816, 2545, 3566, 4997, 7002, 9812, 13749, 19266, 26997, 37830, 53010, 74281, 104088, 145855, 204382, 286394, 401315, 562350, 788003, 1104204, 1547286, 2168163, 3038178, 4257303, 5965624, 8359440, 11713819, 16414204, 23000705, 32230160
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,6,10,15,22,31]; [n le 7 select I[n] else Self(n-2)+Self(n-3)+Self(n-4)- Self(n-6): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^4 - x^3 - x^2 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-x^3-x^2+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-x^3-x^2+1).
a(n) = a(n-2)+a(n-3)+a(n-4)-a(n-6) for n>6. - Vincenzo Librandi, Dec 30 2015

A265072 Coordination sequence for (3,3,5) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 16, 25, 38, 57, 86, 130, 196, 295, 444, 669, 1008, 1518, 2286, 3443, 5186, 7811, 11764, 17718, 26686, 40193, 60536, 91175, 137322, 206826, 311508, 469173, 706638, 1064293, 1602970, 2414290, 3636248, 5476683, 8248628, 12423553, 18711556, 28182142, 42446130, 63929631, 96286698, 145020831, 218421048
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)/(x^6 - x^5 - x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
    LinearRecurrence[{1,0,1,0,1,-1},{1,3,6,10,16,25,38},50] (* Harvey P. Dale, Oct 07 2022 *)
  • PARI
    x='x+O('x^50); Vec((x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-x^3-x+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-x^3-x+1).

A265073 Coordination sequence for (3,3,6) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 16, 26, 41, 64, 99, 154, 240, 374, 582, 905, 1408, 2191, 3410, 5306, 8256, 12846, 19989, 31104, 48399, 75310, 117184, 182342, 283730, 441493, 686976, 1068955, 1663326, 2588186, 4027296, 6266594, 9751009, 15172864, 23609435, 36736994, 57163872, 88948710, 138406878, 215365281, 335114880, 521448871
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^3 + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^5 - x^4 + x^3 - x^2 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^3+1)*(x^2+x+1)*(x+1)/(x^6-x^5-x^4+x^3-x^2-x+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^3+1)*(x^2+x+1)*(x+1)/(x^6-x^5-x^4+x^3-x^2-x+1).

A265074 Coordination sequence for (3,3,7) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 10, 16, 26, 42, 67, 106, 167, 264, 418, 662, 1048, 1658, 2623, 4150, 6567, 10392, 16444, 26020, 41172, 65148, 103087, 163120, 258113, 408424, 646268, 1022620, 1618140, 2560460, 4051537, 6410938, 10144329, 16051850, 25399600, 40190986, 63596094, 100631100, 159233337, 251962422, 398692029, 630869210
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,6,10,16,26,42,67,106]; [n le 9 select I[n] else Self(n-1)+Self(n-3)+Self(n-5)+Self(n-7)-Self(n-8): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Mathematica
    CoefficientList[Series[(x^2 + x + 1) (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^8 - x^7 - x^5 - x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^8-x^7-x^5-x^3-x+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^8-x^7-x^5-x^3-x+1).
a(n) = a(n-1)+a(n-3)+a(n-5)+a(n-7)-a(n-8) for n>8. - Vincenzo Librandi, Dec 30 2015

A265075 Coordination sequence for (3,4,4) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 11, 18, 29, 46, 73, 116, 183, 290, 459, 726, 1149, 1818, 2877, 4552, 7203, 11398, 18035, 28538, 45157, 71454, 113065, 178908, 283095, 447954, 708819, 1121598, 1774757, 2808282, 4443677, 7031440, 11126179, 17605478, 27857979, 44080994, 69751437, 110370990, 174645225, 276349380, 437280663, 691929826
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)/(x^6 - x^4 - 2 x^3 - x^2 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    x='x+O('x^50); Vec((x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-2*x^3-x^2+1)) \\ G. C. Greubel, Aug 07 2017

Formula

G.f.: (x^3+x^2+x+1)*(x^2+x+1)*(x+1)/(x^6-x^4-2*x^3-x^2+1).

A265076 Coordination sequence for (3,5,5) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 11, 20, 35, 60, 103, 178, 307, 528, 909, 1566, 2697, 4644, 7997, 13772, 23717, 40842, 70333, 121120, 208579, 359190, 618555, 1065204, 1834371, 3158940, 5439959, 9368066, 16132595, 27781680, 47842381, 82388590, 141880057, 244329348, 420755613, 724576428, 1247781333, 2148784026, 3700386173, 6372375104
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)/(x^6 - x^5 - 2 x^3 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    Vec((x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-2*x^3-x+1) + O(x^50)) \\ Michel Marcus, Dec 30 2015

Formula

G.f.: (x^2+x+1)*(x^4+x^3+x^2+x+1)/(x^6-x^5-2*x^3-x+1).

A265077 Coordination sequence for (3,6,8) tiling of hyperbolic plane.

Original entry on oeis.org

1, 3, 6, 11, 20, 37, 66, 117, 208, 371, 662, 1179, 2100, 3741, 6666, 11877, 21160, 37699, 67166, 119667, 213204, 379853, 676762, 1205749, 2148216, 3827355, 6818982, 12148995, 21645180, 38563997, 68707298, 122411917, 218094408, 388566507, 692287030, 1233408755, 2197494812, 3915152565, 6975406506, 12427688349
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,6,11,20,37,66]; [n le 7 select I[n] else Self(n-1)+Self(n-2)+Self(n-4) + Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
  • Mathematica
    CoefficientList[Series[(x^5 + x^4 + x^3 + x^2 + x + 1) (x + 1)/(x^6 - x^5 - x^4 - x^2 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    Vec((x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^4-x^2-x+1) + O(x^50)) \\ Michel Marcus, Dec 30 2015
    

Formula

G.f.: (x^5+x^4+x^3+x^2+x+1)*(x+1)/(x^6-x^5-x^4-x^2-x+1).
a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5)-a(n-6) for n>6. - Vincenzo Librandi, Dec 30 2015

A134816 Padovan's spiral numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2007

Keywords

Comments

a(n) is the length of the edge of the n-th equilateral triangle in the Padovan triangle spiral.
Partial sums of A000931. - Juri-Stepan Gerasimov, Jul 17 2009
Rising diagonal sums of triangle A152198. - John Molokach, Jul 09 2013
a(n) is the number of pairs of rabbits living at month n with the following rules: a pair of rabbits born in month n begins to procreate in month n + 2, procreates again in month n + 3, and dies at the end of this month (each pair therefore gives birth to 2 pairs); the first pair is born in month 1. - Robert FERREOL, Oct 16 2017

Examples

			a(6)=3 because 6+4=10 and A000931(10)=3.
G.f. = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A060006.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Aug 12 2018
    
  • Maple
    a:=proc(n, p, q) option remember:
    if n<=p then 1
    elif n<=q then a(n-1, p, q)+a(n-p, p, q)
    else add(a(n-k, p, q), k=p..q) fi end:
    seq(a(n, 2, 3), n=0..100); # Robert FERREOL, Oct 16 2017
  • Mathematica
    Drop[ CoefficientList[ Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 52}], x], 5] (* Robert G. Wilson v, Sep 30 2009 *)
    a[n_]=Round[Root[23#^3-5#-1&,1]Root[#^3-#-1&,1]^n ];a[Range[100]] (* OR *)
    LinearRecurrence[{0, 1, 1}, {1, 1, 1}, 100] (* Federico Provvedi, Feb 12 2025 *)
  • PARI
    {a(n) = if( n>=0, polcoeff( (x + x^2) / (1 - x^2 - x^3) + x * O(x^n), n), polcoeff( (x + x^2) / (1 + x - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jan 01 2019 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x*(1+x)/(1-x^2-x^3)) \\ Joerg Arndt, Feb 07 2025

Formula

a(n) = A000931(n+4).
G.f.: x * (1 + x) / (1 - x^2 - x^3) = x / (1 - x / (1 - x^2 / (1 + x / (1 - x / (1 + x))))). - Michael Somos, Jan 03 2013
a(1)=a(2)=a(3)=1, a(n) = a(n-2) + a(n-3) for n > 3. - Robert FERREOL, Oct 16 2017
a(n) = round(x*rho^n), where the Silver constant rho = Limit_{n->oo} a(n+1)/a(n) = A060006, and x is the real solution of the cubic 23*x^3-5*x-1 = 0. - Federico Provvedi, Feb 12 2025

Extensions

More terms from Robert G. Wilson v, Sep 30 2009
First comment clarified by Omar E. Pol, Aug 12 2018
Previous Showing 21-30 of 36 results. Next