cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A371412 Euler totient function applied to the cubefull numbers (A036966).

Original entry on oeis.org

1, 4, 8, 18, 16, 32, 54, 100, 64, 72, 162, 128, 294, 144, 256, 500, 216, 486, 288, 400, 512, 432, 1210, 576, 648, 800, 1024, 1458, 2028, 2058, 864, 1176, 2500, 1800, 1152, 1296, 1600, 2048, 4624, 2000, 1728, 2352, 1944, 4374, 6498, 2304, 2592, 3200, 4096, 5292, 4000
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323333, A358039, A371413, A371414.

Programs

  • Mathematica
    Join[{1}, EulerPhi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
    (* or *)
    f[n_] := Module[{f = FactorInteger[n], p, e}, If[n == 1, 1, p = f[[;;, 1]]; e = f[[;;, 2]]; If[Min[e] > 2, Times @@ ((p-1) * p^(e-1)), Nothing]]]; Array[f, 20000]
  • PARI
    lista(max) = {my(f); print1(1, ", "); for(k = 2, max, f = factor(k); if(vecmin(f[, 2]) > 2, print1(eulerphi(f), ", ")));}

Formula

a(n) = A000010(A036966(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/((p-1)^2*p)) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 3/p^4 + 1/p^5) = 1.65532418864085918623... .

A371414 Euler phi function applied to the cubefull exponentially odd numbers (A335988).

Original entry on oeis.org

1, 4, 18, 16, 100, 64, 72, 162, 294, 256, 288, 400, 1210, 648, 1024, 1458, 2028, 1176, 2500, 1800, 1152, 1600, 4624, 6498, 2592, 4096, 5292, 4840, 4704, 11638, 4608, 6400, 14406, 5832, 8112, 13122, 23548, 10000, 7200, 28830, 16200, 10368, 16384, 21780, 18496, 19360
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323333, A371414, A371415.

Programs

  • Mathematica
    Join[{1}, EulerPhi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
  • PARI
    lista(max) = {my(f, ans); print1(1, ", "); for(k = 2, max, f = factor(k); ans = 1; for (i = 1, #f~, if (f[i, 2] == 1 || !(f[i, 2] % 2), ans = 0; break)); if(ans, print1(eulerphi(f), ", ")));}

Formula

a(n) = A000010(A335988(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/((p-1)^2*(p+1))) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 2/p^4) = 1.43921640806700099050... .

A070732 Size of largest conjugacy class in the group GL(2,Z_n).

Original entry on oeis.org

1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]
    Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
    f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]+1)*f[i,1]^(2*f[i,2] - if(f[i,1]==2,2,1)));} \\ Amiram Eldar, Nov 05 2022

Formula

Multiplicative with a(p^e) = (p+1)*p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.
a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003
From R. J. Mathar, Apr 14 2011: (Start)
Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/((2^s+2)*zeta(2s-2)).
Dirichlet convolution of A000082 with a signed variant of A099892. (End)
Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{n>=1} 1/a(n) = (13/11) * zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = (13/11) * A098198 * A330523 = 1.7136743536... . - Amiram Eldar, Nov 05 2022

Extensions

Edited by Robert G. Wilson v, May 20 2002

A183031 Decimal expansion of Sum_{j>=1} tau(j)/j^4 = Pi^8/8100.

Original entry on oeis.org

1, 1, 7, 1, 4, 2, 3, 5, 8, 2, 2, 3, 0, 9, 3, 5, 0, 6, 2, 6, 0, 8, 4, 6, 6, 1, 1, 1, 5, 9, 3, 4, 2, 7, 8, 7, 6, 1, 3, 5, 4, 5, 4, 2, 5, 5, 7, 5, 8, 1, 5, 8, 3, 5, 7, 0, 5, 0, 6, 2, 8, 5, 6, 9, 7, 6, 1, 3, 4, 6, 7, 7, 8, 0, 0, 3, 8, 7, 3, 6, 1, 6, 7, 9, 4
Offset: 1

Views

Author

R. J. Mathar, Dec 18 2010

Keywords

Comments

This is the zeta-function Sum_{j>=1} A000005(j)/j^s evaluated at s=4. At s=2, we find A098198; at s=3, A183030.
Since tau(n)/n^4 is a multiplicative function, one finds an Euler product for the sum, which is expanded with an Euler transformation to a product of Riemann zeta functions as in A175639 for numerical evaluation.

Examples

			1.1714235822309350626084... = 1 + 2/2^4 + 2/3^4 + 3/4^4 + 2/5^4 + 4/6^4 + 2/7^4 + ...
		

Crossrefs

Programs

Formula

Equals the Euler product Product_{p prime} (1 + (2*p^s - 1)/(p^s - 1)^2) at s=4, which is the square of A013662.

A227929 Decimal expansion of 36/Pi^4.

Original entry on oeis.org

3, 6, 9, 5, 7, 5, 3, 6, 1, 1, 6, 8, 6, 3, 6, 0, 6, 6, 8, 0, 9, 5, 0, 0, 1, 9, 7, 6, 1, 6, 2, 7, 2, 9, 8, 9, 1, 0, 5, 8, 0, 0, 8, 6, 6, 7, 3, 0, 9, 7, 7, 4, 5, 7, 8, 5, 4, 0, 4, 9, 2, 7, 6, 9, 9, 1, 0, 5, 1, 8, 5, 6, 3, 1, 9, 8, 6, 9, 1, 2, 8, 9, 6, 6, 6, 0, 5, 7, 4, 9, 4, 6, 3, 0, 4, 5, 7, 6, 6, 0, 2, 5, 7, 6, 6
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 09 2013

Keywords

Comments

Ernesto Cesaro asserted that lim n -> infinity A002321(n)/n = 36/Pi^4 using a fallacious argument. In fact this limit equals zero.

Examples

			36/Pi^4 = 0.369575361168636066809500197....
		

References

  • Ernesto Cesaro, Sur diverses questions d'arithmetique. Mem. Soc. Roy. Sci. Liege 10 (1883), 1-350. Reprinted in Opere Scelte I, Vol. 1, pp. 10-362.
  • Wladyslaw Narkiewicz, The development of prime number theory: from Euclid to Hardy and Littlewood, Springer-Verlag, New York, 2000, p. 31.

Crossrefs

Programs

  • Magma
    pi:=Pi(RealField(107)); Reverse(Intseq(Floor(10^105*36/pi^4)));
    
  • Mathematica
    RealDigits[N[36/Pi^4, 105]][[1]]
  • PARI
    default(realprecision, 105); x=360/Pi^4; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));

Formula

Equals Product_{primes p} (1 - 2/p^2 + 1/p^4). - Vaclav Kotesovec, Jun 20 2020
Equals 1/A098198. - R. J. Mathar, Jul 21 2025

A386403 Decimal expansion of zeta(3)/3.

Original entry on oeis.org

4, 0, 0, 6, 8, 5, 6, 3, 4, 3, 8, 6, 5, 3, 1, 4, 2, 8, 4, 6, 6, 5, 7, 9, 3, 8, 7, 1, 7, 0, 4, 8, 3, 3, 3, 0, 2, 5, 4, 9, 9, 5, 4, 3, 0, 7, 8, 0, 1, 6, 6, 2, 9, 3, 9, 3, 0, 7, 5, 7, 1, 8, 5, 1, 1, 3, 9, 4, 6, 0, 6, 8, 5, 9, 5, 4, 3, 7, 6, 9, 6, 7, 2, 8, 8, 1, 8, 6, 2, 4, 5, 3, 6, 4, 4, 5, 0, 8, 6, 0, 4
Offset: 0

Views

Author

R. J. Mathar, Jul 20 2025

Keywords

Examples

			0.4006856343865314284665793871704833...
		

Crossrefs

Cf. A002117, A072691 (zeta(2)/2), A098198 (zeta(4)/4), A386404 (zeta(5)/5), A259928 (zeta(6)/6).

Programs

  • Maple
    Digits := 100 ; Zeta(3.0)/3. ;
  • Mathematica
    RealDigits[Zeta[3]/3, 10 , 120][[1]] (* Amiram Eldar, Jul 21 2025 *)
  • PARI
    zeta(3)/3 \\ Amiram Eldar, Jul 21 2025

Formula

Equals A002117/3.
Equals Sum_{k>=1} cos(k*Pi/3)/k^3 (Shamos, 2011). - Amiram Eldar, Jul 21 2025

A098199 Continued fraction expansion for Pi^4/36, the limiting value of A024916(n)/A002088(n).

Original entry on oeis.org

2, 1, 2, 2, 1, 1, 46, 459, 2, 3, 1, 2, 2, 1, 1, 8, 18, 1, 1, 1, 1, 6, 5, 6, 14, 1, 2, 1, 1, 140, 1, 2, 1, 1, 2, 1, 9, 16, 1, 2, 1, 1, 1, 15, 1, 3, 55, 1, 1, 12, 1, 1, 5, 4, 6, 13, 2, 2, 7, 2, 32, 1, 1, 6, 1, 1, 54, 1, 1, 1, 21, 1, 2, 1, 3, 4, 5, 15, 1, 6, 1, 2, 5, 1, 1, 7, 1, 834, 2, 1, 4, 8, 3, 2, 3, 1, 5
Offset: 0

Views

Author

Labos Elemer, Sep 21 2004

Keywords

Crossrefs

Cf. A024916, A002088, A098198 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[(Pi^4)/36, 256]
  • PARI
    contfrac(Pi^4/36) \\ Amiram Eldar, Mar 08 2025

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A338106 Decimal expansion of Sum_{m>1, n>1} 1/(m^2*n^2-1).

Original entry on oeis.org

4, 2, 3, 0, 3, 5, 5, 2, 5, 7, 6, 1, 3, 1, 3, 1, 5, 9, 7, 4, 2, 0, 9, 7, 1, 0, 1, 6, 3, 9, 1, 0, 3, 8, 6, 2, 8, 9, 9, 5, 4, 6, 4, 9, 7, 0, 7, 0, 2, 9, 1, 0, 7, 8, 9, 3, 5, 7, 5, 2, 3, 2, 5, 1, 6, 5, 5, 0, 4, 5, 9, 1, 2, 7, 0, 4, 5, 5, 3, 5, 4, 8, 0, 2, 4, 8, 1, 2
Offset: 0

Views

Author

Bernard Schott, Oct 10 2020

Keywords

Comments

For p>1, q>1 in R, Sum_{m >1, n>1} 1/(m^p*n^q-1) = Sum_{k>0} (zeta(k*p) - 1) * (zeta(k*q) - 1) [Proof in References]. This sequence corresponds to p = q = 2.
Double inequality: Sum_{m>1, n>1} 1/(m^2*n^2+1) = A338107 = 0.409... < Sum_{m>1, n>1} 1/(m^2*n^2) = (zeta(2)-1)^2 = 0.415... < Sum_{m>1, n>1} 1/(m^2*n^2-1) = this constant = 0.423...

Examples

			0.4230355257613131597420971016391038628995464... (with help of _Amiram Eldar_).
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.25, p. 277.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(Zeta[2*k] - 1)^2, {k, 1, 100}], 10, 90][[1]] (* Amiram Eldar, Oct 10 2020 *)
  • PARI
    sumpos(k=1, (zeta(2*k) - 1)^2) \\ Michel Marcus, Oct 10 2020

Formula

Equals Sum_{k>0} (zeta(2*k) - 1)^2.
Equals -3/4 + Sum_{k>=2} (1/2 - Pi*cot(Pi/k)/(2*k)). - Vaclav Kotesovec, Oct 14 2020

A338107 Decimal expansion of Sum_{m>1, n>1} 1/(m^2*n^2+1).

Original entry on oeis.org

4, 0, 9, 4, 4, 7, 9, 2, 4, 8, 9, 0, 7, 6, 0, 4, 0, 5, 7, 5, 3, 4, 1, 9, 0, 1, 2, 6, 9, 0, 2, 5, 3, 8, 5, 0, 3, 9, 5, 0, 6, 8, 3, 6, 6, 3, 8, 8, 3, 3, 8, 6, 3, 3, 3, 7, 0, 9, 7, 0, 1, 8, 2, 8, 0, 1, 7, 2, 8, 5, 3, 9, 7, 7, 8, 8, 1, 2, 5, 4, 8, 5, 1, 1, 5, 0, 7, 0, 6, 4
Offset: 0

Views

Author

Bernard Schott, Oct 10 2020

Keywords

Comments

Double inequality: Sum_{m>1, n>1} 1/(m^2*n^2+1) = this constant = 0.409... < Sum_{m>1, n>1} 1/(m^2*n^2) = (zeta(2)-1)^2 = 0.415... < Sum_{m>1, n>1} 1/(m^2*n^2-1) = A338106 = 0.423...

Examples

			0.40944792489076040575341901269025385039506836638... (with help of _Amiram Eldar_).
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.25, p. 277.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^(k - 1)*(Zeta[2*k] - 1)^2, {k, 1, 100}], 10, 90][[1]] (* Amiram Eldar, Oct 10 2020 *)
  • PARI
    sumalt(k=1, (-1)^(k-1) * (zeta(2*k) - 1)^2) \\ Michel Marcus, Oct 10 2020

Formula

Equals Sum_{k>0} (-1)^(k-1) * (zeta(2*k) - 1)^2.
Equals 3/2 - Pi*coth(Pi) + Sum_{k>=1} (Pi*coth(Pi/k)/(2*k) - 1/2). - Vaclav Kotesovec, Oct 14 2020

A364488 Decimal expansion of zeta(2) * primezeta(2).

Original entry on oeis.org

7, 4, 3, 9, 1, 7, 1, 8, 7, 8, 6, 9, 7, 6, 7, 9, 7, 4, 9, 3, 5, 9, 6, 1, 8, 0, 6, 4, 6, 3, 5, 3, 4, 5, 1, 2, 7, 1, 0, 4, 3, 1, 8, 7, 5, 0, 2, 2, 8, 7, 5, 1, 1, 5, 3, 1, 4, 3, 4, 6, 5, 4, 6, 0, 4, 7, 5, 6, 9, 0, 8, 8, 6, 4, 2, 4, 0, 4, 6, 8, 5, 2, 3, 6, 9, 3, 8, 1, 3, 1, 1, 6, 3, 8, 5, 1, 9, 7, 1, 5, 6, 3, 7, 1, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 26 2023

Keywords

Examples

			0.743917187869767974935961806463534512710431875022875115314346546...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[2] PrimeZetaP[2], 10, 105][[1]]
  • PARI
    zeta(2) * sumeulerrat(1/p, 2) \\ Amiram Eldar, Jul 28 2023

Formula

Equals Sum_{k>=1} omega(k) / k^2, where omega(k) is the number of distinct primes dividing k (A001221).
Previous Showing 11-20 of 21 results. Next