cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A011779 Expansion of 1/((1-x)^3*(1-x^3)^2).

Original entry on oeis.org

1, 3, 6, 12, 21, 33, 51, 75, 105, 145, 195, 255, 330, 420, 525, 651, 798, 966, 1162, 1386, 1638, 1926, 2250, 2610, 3015, 3465, 3960, 4510, 5115, 5775, 6501, 7293, 8151, 9087, 10101, 11193, 12376, 13650
Offset: 0

Views

Author

Keywords

Comments

The Ca2 and Ze4 triangle sums of A139600 are related to the sequence given above, e.g., Ze4(n) = A011779(n-1) - A011779(n-2) - A011779(n-4) + 3*A011779(n-5), with A011779(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

Crossrefs

Cf. A011779, A049347, A099254, A139600, A236770 (first trisection, except 0).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    Coefficients(R!( 1/((1-x)^3*(1-x^3)^2) )); // G. C. Greubel, Oct 22 2024
    
  • Mathematica
    CoefficientList[Series[1 / ((1 - x)^3 (1 - x^3)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
  • PARI
    Vec(1/((1-x)^3*(1-x^3)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    a(n)=1/216 * n^4 + 1/12 * n^3 + 37/72 * n^2 + [5/4, 139/108, 131/108][1+n%3] * n + [1, 10/9, 7/9][1+n%3] \\ Yurii Ivanov, Jul 06 2021
    
  • SageMath
    def A011779_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^3*(1-x^3)^2) ).list()
    A011779_list(60) # G. C. Greubel, Oct 22 2024

Formula

a(n) = (1/216)*((208 + 270*n + 111*n^2 + 18*n^3 + n^4) - 8*(-1)^n*(A099254(n) + A099254(n-1)) + 16*(A049347(n) + 2*A049347(n-1)) ). - G. C. Greubel, Oct 22 2024

A128502 Convolution array for Chebyshev's S(n,x)=U(n,x/2) polynomials.

Original entry on oeis.org

1, 2, 3, -2, 4, -6, 5, -12, 3, 6, -20, 12, 7, -30, 30, -4, 8, -42, 60, -20, 9, -56, 105, -60, 5, 10, -72, 168, -140, 30, 11, -90, 252, -280, 105, -6, 12, -110, 360, -504, 280, -42, 13, -132, 495, -840, 630, -168, 7, 14, -156, 660, -1320, 1260, -504, 56, 15, -182, 858, -1980, 2310, -1260, 252, -8, 16, -210, 1092
Offset: 0

Views

Author

Wolfdieter Lang Apr 04 2007

Keywords

Comments

S1(n,x):=sum(S(n-k,x)*S(k,x),k=0..n)= sum(a(n,m)*x^(n-2*m),m=0..floor(n/2)).
The unsigned column sequences, m>=0, divided by (m+1) give Pascal triangle column sequences for m+1.
G.f. for column m sequence: ((-1)^m)*(m+1)*(x^(2*m))/(1-x)^(m+2), m>=0.
Row polynomials P1(n,x):= sum(a(n,m)*x^m,m=0..floor(n/2)) (increasing powers of x).
Written as a triangle with increasing powers of x this is A294519. - Wolfdieter Lang, Nov 12 2017

Examples

			[1];[2];[3,-2],[4,-6];[5,-12,3];[6,-20,12];[7,-30,30,-4];[8,-42,60,-20];...
n=4: [5,-12,3] stands for the polynomial S1(4,x) = 5*x^4-12*x^2+3 = 2*(S(4,x)*1+S(3,x)*S(1,x))+S(2,x)*S(2,x).
n=4: [5,-12,3] stands also for the row polynomial P1(4,x) = 5-12*x+3*x^2.
		

Crossrefs

Row sums (signed array) give A099254. Unsigned row sums are A001629(n+2).
Cf. A115139 (with offset n>=0 is S(n, x) array, decreasing powers of x).
Cf. A294519 (as triangle).

Formula

a(n,m)=binomial(n-m,m)*(n+1-m)*(-1)^m, m=0..floor(n/2), n>=0.
a(n,m)=binomial(n+1-m,m+1)*(m+1)*(-1)^m, m=0..floor(n/2), n>=0.
G.f. for S1(n,x): 1/(1-x*z+z^2)^2.
G.f. for P1(n,x): 1/(1-z+x*z^2)^2.

A186731 a(3n) = 2n, a(3n+1) = n, a(3n+2) = n+1.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 4, 2, 3, 6, 3, 4, 8, 4, 5, 10, 5, 6, 12, 6, 7, 14, 7, 8, 16, 8, 9, 18, 9, 10, 20, 10, 11, 22, 11, 12, 24, 12, 13, 26, 13, 14, 28, 14, 15, 30, 15, 16, 32, 16, 17, 34, 17, 18, 36, 18, 19, 38, 19, 20, 40, 20, 21, 42, 21, 22, 44, 22, 23, 46, 23, 24, 48
Offset: 0

Views

Author

Philippe Deléham, Jan 21 2012

Keywords

Crossrefs

Column k = 2 of triangle in A198295.

Programs

  • Magma
    I:=[0,0,1,2,1,2]; [n le 6 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..80]]; // Vincenzo Librandi, Apr 28 2015
    
  • Maple
    f:= gfun:-rectoproc({a(n)=2*a(n-3)-a(n-6), seq(a(i) = [0,0,1,2,1,2][i+1],i=0..5)},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Apr 01 2016
  • Mathematica
    CoefficientList[Series[(x*(1 + x)/(1 - x^3))^2, {x, 0, 100}], x] (* Wesley Ivan Hurt, Apr 28 2015 *)
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {0, 0, 1, 2, 1, 2}, 100] (* Vincenzo Librandi, Apr 28 2015 *)
  • PARI
    vector(50,n,n--;(n+1+n*0^(n%3)-(n+1)%3)/3) \\ Derek Orr, Apr 28 2015

Formula

G.f.: (x*(1+x)/(1-x^3))^2.
a(n) = |A099254(n-2)| = |A099470(n-1)|. - R. J. Mathar, May 02 2013
From Wesley Ivan Hurt, Apr 28 2015: (Start)
a(n) = 2*a(n-3)-a(n-6).
a(n) = (n+1+n*0^mod(n,3)-mod(n+1,3))/3. (End)
E.g.f.: (4/9)*x*exp(x) - (x/9)*exp(-x/2)*cos(sqrt(3)*x/2) - (sqrt(3)/9)*(2+x)*exp(-x/2)*sin(sqrt(3)*x/2). - Robert Israel, Apr 01 2016
From Ridouane Oudra, Nov 24 2024: (Start)
a(n) = n^3/6 - n/6 - (n^2 + 3*n/2 - 5/2)*floor(n/3) + (3*n/2 + 9/2)*floor(n/3)^2.
a(n) = t(n+1)*t(n+3) - t(n-1)*t(n+1), where t(n) = A002264(n).
a(n) = A008130(n+1) - A008130(n-1). (End)
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/2. - Amiram Eldar, May 10 2025

Extensions

More terms from Vincenzo Librandi, Apr 28 2015

A099470 A sequence generated from the Quadrifoil.

Original entry on oeis.org

-1, -2, -1, 2, 4, 2, -3, -6, -3, 4, 8, 4, -5, -10, -5, 6, 12, 6, -7, -14, -7, 8, 16, 8, -9, -18, -9, 10, 20, 10, -11, -22, -11, 12, 24, 12, -13, -26, -13, 14, 28, 14, -15, -30, -15, 16, 32, 16, -17, -34, -17, 18, 36, 18, -19, -38, -19, 20, 40, 20, -21, -42
Offset: 1

Views

Author

Gary W. Adamson, Oct 17 2004

Keywords

Comments

a(3n - 1) = 2n (unsigned; n = 1, 2, 3...). In A099471, a(3n) = (2n + 1), unsigned. Odifreddi, p. 135: "Since the trefoil has polynomial x^2 - x + 1 and the quadrifoil (or flat knot) is the sum of two trefoils, its polynomial is (x^2 - x + 1)^2 = x^4 - 2x^3 + 3x^2 - 2x + 1."
Coefficient of x of the characteristic polynomial of the n X n matrix with 1's along the superdiagonal, main diagonal and subdiagonal. - John M. Campbell, Sep 14 2011

Examples

			a(7) = -3 since M^7 * [1 0 0 0] = [2 4 2 -3].
		

References

  • Piergiorgio Odifreddi, "The Mathematical Century; The 30 Greatest Problems of the Last 100 Years", Princeton University Press, 2000, page 135.

Crossrefs

Programs

  • Magma
    I:=[-1,-2,-1,2]; [n le 4 select I[n] else 2*Self(n-1)-3*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 09 2016
  • Mathematica
    Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2] + KroneckerDelta[#1,#2+1] + KroneckerDelta[#1,#2-1] &, {n,n}], x], x], {n,75}] (* John M. Campbell, Sep 14 2011 *)
    Table[(3 n Cos[Pi n/3] - Sqrt[3] (3 n + 4) Sin[Pi n/3])/9, {n, 20}] (* Vladimir Reshetnikov, Sep 08 2016 *)
    LinearRecurrence[{2, -3, 2, -1}, {-1, -2, -1, 2}, 90] (* Vincenzo Librandi, Sep 09 2016 *)

Formula

M = the 4 X 4 companion matrix to the Quadrafoil polynomial x^4 - 2x^3 + 3x^2 - 2x + 1: [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 2 -3 2]. a(n) = rightmost term in M^n * [1 0 0 0].
O.g.f.: -x/(x^2-x+1)^2. a(n) = 2*a(n-1)-3*a(n-2)+2*a(n-3)-a(n-4) = -A099254(n-1). - R. J. Mathar, Apr 06 2008, Apr 23 2009

A128214 Expansion of (1+2x+3x^2)/(1+x+x^2)^2.

Original entry on oeis.org

1, 0, 0, -2, 3, 0, -5, 6, 0, -8, 9, 0, -11, 12, 0, -14, 15, 0, -17, 18, 0, -20, 21, 0, -23, 24, 0, -26, 27, 0, -29, 30, 0, -32, 33, 0, -35, 36, 0, -38, 39, 0, -41, 42, 0, -44, 45, 0, -47, 48, 0, -50, 51, 0, -53, 54, 0, -56, 57, 0, -59, 60, 0, -62, 63, 0, -65
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

Binomial transform is A128213.

Crossrefs

Cf. A128213.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2 x + 3 x^2)/(1 + x + x^2)^2, {x, 0, 50}], x] (* Wesley Ivan Hurt, Mar 15 2015 *)
    LinearRecurrence[{-2,-3,-2,-1},{1,0,0,-2},70] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    Vec((1+2*x+3*x^2)/(1+x+x^2)^2 + O(x^80)) \\ Michel Marcus, Mar 16 2015

Formula

G.f.: (1+2x+3x^2)/(1+x+x^2)^2.
a(n) = (1-n)*cos(2*Pi*n/3)+(n-1)*sin(2*Pi*n/3)/sqrt(3).
a(n) = (-1)^n*( A099254(n)-2*A099254(n-1)+3*A099254(n-2) ). - R. J. Mathar, Mar 21 2011
From Wesley Ivan Hurt, Mar 15 2015: (Start)
a(n) + 2*a(n-1) + 3*a(n-2) + 2*a(n-3) + a(n-4) = 0.
a(n) = (n-1) * ((n-2)^2 mod 3) * (-1)^floor((2n-2)/3). (End)

Extensions

More terms from Wesley Ivan Hurt, Mar 15 2015

A147621 The 3rd Witt transform of A000292.

Original entry on oeis.org

0, 0, 0, 0, 4, 26, 120, 455, 1456, 4122, 10608, 25194, 55980, 117572, 235144, 450681, 832048, 1485800, 2575368, 4345965, 7158060, 11532402, 18209100, 28224105, 43008120, 64512240, 95365920, 139075245, 200268432, 284997384, 401107356
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2008

Keywords

Comments

The 2nd Witt transform is essentially in A032094.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[x^4(2*x^2 - x + 2)(2*x^4 - 2*x^3 + 9*x^2 - 2*x+2)/((1-x)^12 * (1 + x + x^2)^4), {x, 0, 40}],  x] (* Vincenzo Librandi  Dec 13 2012 *)
  • SageMath
    def A147621_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4) ).list()
    A147621_list(40) # G. C. Greubel, Oct 24 2022

Formula

G.f.: x^4*(2-x+2*x^2)*(2-2*x+9*x^2-2*x^3+2*x^4)/((1-x)^12*(1+x+x^2)^4).
a(n) = (1/729)*(b(n) + c(n)), where b(n) = n*(n+3)*(n+6)*(3*n^8 +72*n^7 +618*n^6 + 2052*n^5 +207*n^4 -11772*n^3 -14268*n^2 +9648*n -232960)/492800 and c(n) = 9*A049347(n) +5*A049347(n-1) +9*(-1)^n*(A099254(n) -A099254(n-1)) -18(-1)^n*A128504(n) +27*(-1)^n*Sum_{k=0..n} A099254(n-k)*A099254(k-1). - G. C. Greubel, Oct 24 2022

A200067 Maximum sum of all products of absolute differences and distances between element pairs among the integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 12, 20, 30, 45, 63, 84, 112, 144, 180, 225, 275, 330, 396, 468, 546, 637, 735, 840, 960, 1088, 1224, 1377, 1539, 1710, 1900, 2100, 2310, 2541, 2783, 3036, 3312, 3600, 3900, 4225, 4563, 4914, 5292, 5684, 6090, 6525, 6975, 7440, 7936, 8448
Offset: 0

Views

Author

Alois P. Heinz, Nov 13 2011

Keywords

Comments

Also the maximum sum of weighted inversions among the compositions of n where weights are products of absolute differences and distances between the element pairs which are not in sorted order.
a(n) is divisible by at least one triangular number >1 for n>=4. Thus 3 is the only prime in this sequence.

Examples

			a(2) =  0: [1,1]-> 0, [2]-> 0; the maximum is 0.
a(3) =  1: [1,1,1]-> 0, [2,1]-> 1, [3]-> 0; the maximum is 1.
a(4) =  3: [1,1,1,1]-> 0, [2,1,1]-> 1+2 = 3, [2,2]->0, [3,1]->2, [4]->0.
a(5) =  6: [2,1,1,1]-> 1+2+3 = 6, [3,1,1]-> 2 + 2*2 = 2*(1+2) = 6.
a(6) = 12: [3,1,1,1]-> 2 + 2*2 + 2*3 = 2*(1+2+3) = 12.
a(7) = 20: [3,1,1,1,1]-> 2 + 2*2 + 2*3 + 2*4 = 2*(1+2+3+4) = 20.
a(8) = 30: [3,1,1,1,1,1]-> 2*(1+2+3+4+5) = 30, [4,1,1,1,1]-> 3*(1+2+3+4) = 30.
		

Crossrefs

Programs

  • Maple
    a:= n-> (k-> (n-k-1)*k*(k+1)/2)(max(0, floor((2*n-1)/3))):
    seq(a(n), n=0..50);
  • Mathematica
    a[n_] := Max[Table[(n-k-1)*k*(k+1)/2, {k, 0, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 22 2013, after Alois P. Heinz *)

Formula

G.f.: x^3*(1+x)*(1+x^2)/((1+x+x^2)^2*(x-1)^4).
a(n) = max_{k=0..n} (n-k-1)*k*(k+1)/2.
a(n) = (n-k-1)*k*(k+1)/2 with k = max(0, floor((2*n-1)/3)), or k = A004396(n-1) for n>0.
27*a(n) = (2*n-1)*(n^2-n-1) - A132677(n) - 3*(-1)^n*A099254(n-1). - R. J. Mathar, Mar 14 2025

A147618 The 3rd Witt transform of A000217.

Original entry on oeis.org

0, 0, 0, 0, 3, 15, 54, 165, 429, 999, 2145, 4290, 8100, 14586, 25194, 41985, 67830, 106590, 163431, 245157, 360525, 520749, 740025, 1036035, 1430703, 1950975, 2629575, 3506085, 4628052, 6052068, 7845255, 10086780, 12869340, 16301142
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2008

Keywords

Comments

The 2nd Witt transform of A000217 is essentially in A032092.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0,0,0] cat Coefficients(R!( 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3), {x,0,40}], x] (* Vincenzo Librandi, Dec 13 2012 *)
  • SageMath
    def A147618_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3) ).list()
    A147618_list(30) # G. C. Greubel, Oct 24 2022

Formula

G.f.: 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3).
a(n) = (1/81)*(n*(n+3)*(3*n^6 +27*n^5 +45*n^4 -135*n^3 -288*n^2 +108*n -2000)/4480 +2*A049347(n) +A049347(n-1) +(-1)^n*(A099254(n) -2*A099254(n- 1)) -3*(-1)^n*(A128504(n) -2*A128504(n-1))). - G. C. Greubel, Oct 24 2022

A291014 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^3)^2.

Original entry on oeis.org

0, 0, 2, 6, 12, 23, 48, 105, 228, 486, 1026, 2161, 4548, 9555, 20026, 41874, 87384, 182043, 378648, 786429, 1631120, 3378750, 6990510, 14447045, 29826156, 61516455, 126761190, 260978922, 536870916, 1103567983, 2266788288, 4652881233, 9544371772, 19565962134
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0,0] cat Coefficients(R!( x^2*(2-6*x+6*x^2-3*x^3)/((1-2*x)*(1-x+x^2))^2 )); // G. C. Greubel, Jun 05 2023
    
  • Mathematica
    z = 60; s = x/(1-x); p = (1 - s^3)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291014 *)
    LinearRecurrence[{6,-15,22,-21,12,-4}, {0,0,2,6,12,23}, 50] (* G. C. Greubel, Jun 05 2023 *)
  • SageMath
    def A291014_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(2-6*x+6*x^2-3*x^3)/((1-2*x)*(1-x+x^2))^2 ).list()
    A291014_list(50) # G. C. Greubel, Jun 05 2023

Formula

G.f.: x^2*(2 - 6*x + 6*x^2 - 3*x^3)/( (1-2*x)*(1-x+x^2) )^2.
a(n) = 6*a(n-1) - 15*a(n-2) + 22*a(n-3) - 21*a(n-4) + 12*a(n-5) - 4*a(n-6) for n >= 7.
a(n) = (1/9)*( 2^(n-1)*(n + 8) - 3*(A099254(n) - A099254(n-1)) - A010892(n) - 5*A010892(n-1) ). - G. C. Greubel, Jun 05 2023

A136161 a(n) = 2*a(n-3) - a(n-6), starting a(0..5) = 0, 5, 2, 1, 3, 1.

Original entry on oeis.org

0, 5, 2, 1, 3, 1, 2, 1, 0, 3, -1, -1, 4, -3, -2, 5, -5, -3, 6, -7, -4, 7, -9, -5, 8, -11, -6, 9, -13, -7, 10, -15, -8, 11, -17, -9, 12, -19, -10, 13, -21, -11, 14, -23, -12, 15, -25, -13, 16, -27, -14
Offset: 0

Views

Author

Paul Curtz, Mar 16 2008

Keywords

Comments

Consider the general recurrence a(n) = k*a(n-1) + (5-2*k)*a(n-2) + (2-k)*a(n-3). The coefficients, in k, can be used to form the triple (k, 5-2*k, 2-k). Each triple is associated with a sequence, for example (0, 5, 2) leads to A111108, A112685, ..., (1, 3, 1) leads to A051927, A097075, ..., and so on. This sequence is formed from the triples {(0, 5, 2), (1, 3, 1), (2, 1, 0), (3, -1, -1), (4, -3, -2), ...}, for k >= 0. (Comment modified by G. C. Greubel, Dec 31 2023).

Crossrefs

Programs

  • Magma
    I:=[0,5,2,1,3,1]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..60]]; // G. C. Greubel, Dec 26 2023
    
  • Mathematica
    LinearRecurrence[{0,0,2,0,0,-1},{0,5,2,1,3,1},60] (* Harvey P. Dale, Aug 16 2012 *)
    Table[PadRight[{n, 5-2*n, 2-n}], {n,0,20}]//Flatten (* _G. C. Greubel, Dec 26 2023 *)
  • PARI
    Vec(x*(5+2*x+x^2-7*x^3-3*x^4)/((1-x)^2*(1+x+x^2)^2+O(x^99))) \\ Charles R Greathouse IV, Jul 06 2011
    
  • SageMath
    def a(n): # a = A136161
        if n<6: return (0,5,2,1,3,1)[n]
        else: return 2*a(n-3) - a(n-6)
    [a(n) for n in range(61)] # G. C. Greubel, Dec 26 2023

Formula

G.f.: x*(5+2*x+x^2-7*x^3-3*x^4) / ( (1-x)^2*(1+x+x^2)^2 ). - R. J. Mathar, Jul 06 2011
a(3n) = n.
a(3n+1) = 5 - 2*n.
a(3n+3) = 2 - n.
a(n) = (1/9)*( 27 - 2*(n+1) - 34*ChebyshevU(n, -1/2) + (-1)^n*(9*A099254(n) - 6*A099254(n-1)) ). - G. C. Greubel, Dec 26 2023
Previous Showing 11-20 of 26 results. Next