cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A326331 Number of simple graphs covering the vertices {1..n} whose nesting edges are connected.

Original entry on oeis.org

1, 0, 1, 0, 1, 14, 539
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected.

Crossrefs

The non-covering case is the binomial transform A326330.
Covering graphs whose crossing edges are connected are A324327.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[nestcmpts[#]]<=1&]],{n,0,5}]

A268814 Number of purely crossing partitions of [n].

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0

Views

Author

Michel Marcus, Feb 14 2016

Keywords

Comments

For the definition of a purely crossing partition refer to Dykema link (see PC(n) Definition 1.2 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
For n >= 1, a set partition of {1,...,n} is purely crossing if it is topologically connected (A099947), has no successive elements in the same block (A000110(n - 1)), and the first and last vertices belong to different blocks (A005493(n - 2)). For example, the a(4) = 1, a(6) = 5, and a(7) = 14 purely crossing set partitions are:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)

Examples

			G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
		

Crossrefs

Programs

  • Mathematica
    n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
    intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
    
  • PARI
    {a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
    for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
    
  • PARI
    {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
    {Bell(n) = sum(k=0,n, Stirling2(n, k) )}
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016

Formula

G.f.: G(x) satisfies B(x) = x + (1 + x)*G(x) where B(x) is the g.f. of A268815 (see A(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} A000110(n)*x^n / ((1+x)^(2*n+1) * A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = 1/(1+x) * Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)^2*A(x) - k*x).
(3) A(x) = 1/(1+x - x/((1+x)*A(x) - 1*x/(1+x - x/((1+x)*A(x) - 2*x/(1+x - x/((1+x)*A(x) - 3*x/(1+x - x/((1+x)*A(x) - 4*x/(1+x - x/((1+x)*A(x) -...)))))))))), a continued fraction. (End)

A322402 Triangle read by rows: The number of chord diagrams with n chords and k topologically connected components, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 4, 6, 5, 0, 27, 36, 28, 14, 0, 248, 310, 225, 120, 42, 0, 2830, 3396, 2332, 1210, 495, 132, 0, 38232, 44604, 29302, 14560, 6006, 2002, 429, 0, 593859, 678696, 430200, 204540, 81900, 28392, 8008, 1430, 0, 10401712, 11701926, 7204821, 3289296, 1263780, 431256, 129948, 31824, 4862
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2018

Keywords

Comments

If all subsets are allowed instead of just pairs (chords), we get A324173. The rightmost column is A000108 (see Riordan). - Gus Wiseman, Feb 27 2019

Examples

			From _Gus Wiseman_, Feb 27 2019: (Start)
Triangle begins:
  1
  0      1
  0      1      2
  0      4      6      5
  0     27     36     28     14
  0    248    310    225    120     42
  0   2830   3396   2332   1210    495    132
  0  38232  44604  29302  14560   6006   2002    429
  0 593859 678696 430200 204540  81900  28392   8008   1430
Row n = 3 counts the following chord diagrams (see link for pictures):
  {{1,3},{2,5},{4,6}}  {{1,2},{3,5},{4,6}}  {{1,2},{3,4},{5,6}}
  {{1,4},{2,5},{3,6}}  {{1,3},{2,4},{5,6}}  {{1,2},{3,6},{4,5}}
  {{1,4},{2,6},{3,5}}  {{1,3},{2,6},{4,5}}  {{1,4},{2,3},{5,6}}
  {{1,5},{2,4},{3,6}}  {{1,5},{2,3},{4,6}}  {{1,6},{2,3},{4,5}}
                       {{1,5},{2,6},{3,4}}  {{1,6},{2,5},{3,4}}
                       {{1,6},{2,4},{3,5}}
(End)
		

Crossrefs

Cf. A000699 (k = 1 column), A001147 (row sums), A000108 (diagonal), A002694 (subdiagonal k = n - 1).

Formula

The g.f. satisfies g(z,w) = 1+w*A000699(w*g^2), where A000699(z) is the g.f. of A000699.

Extensions

Offset changed to 0 by Gus Wiseman, Feb 27 2019

A324323 Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			Triangle begins:
    1
    0    1
    0    1    0
    0    1    0    0
    0    1    1    0    0
    0    1    5    0    0    0
    0    1   16    4    0    0    0
    0    1   42   42    0    0    0    0
    0    1   99  258   27    0    0    0    0
    0    1  219 1222  465    0    0    0    0    0
Row n = 6 counts the following set partitions:
  {{123456}}  {{1235}{46}}  {{13}{25}{46}}
              {{124}{356}}  {{14}{25}{36}}
              {{1245}{36}}  {{14}{26}{35}}
              {{1246}{35}}  {{15}{24}{36}}
              {{125}{346}}
              {{13}{2456}}
              {{134}{256}}
              {{1345}{26}}
              {{1346}{25}}
              {{135}{246}}
              {{1356}{24}}
              {{136}{245}}
              {{14}{2356}}
              {{145}{236}}
              {{146}{235}}
              {{15}{2346}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]

A326335 Number of set partitions of {1..n} whose nesting blocks are connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 21, 86, 394, 1974, 10696
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Two blocks are nesting if they are of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. A set partition has its nesting blocks connected if the graph whose vertices are the blocks and whose edges are nesting pairs of blocks is connected.

Examples

			The a(0) = 1 through a(6) = 21 set partitions:
  {}  {1}  {12}  {123}  {1234}    {12345}    {123456}
                        {14}{23}  {125}{34}  {1236}{45}
                                  {134}{25}  {1245}{36}
                                  {14}{235}  {125}{346}
                                  {145}{23}  {1256}{34}
                                  {15}{234}  {126}{345}
                                             {134}{256}
                                             {1345}{26}
                                             {1346}{25}
                                             {136}{245}
                                             {14}{2356}
                                             {145}{236}
                                             {1456}{23}
                                             {146}{235}
                                             {15}{2346}
                                             {156}{234}
                                             {16}{2345}
                                             {15}{26}{34}
                                             {16}{23}{45}
                                             {16}{24}{35}
                                             {16}{25}{34}
		

Crossrefs

Simple graphs whose nesting blocks are connected are A326330.
Set partitions whose crossing blocks are connected are A099947.
Set partitions whose capturing blocks are connected are A326336.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    nestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],nesXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[nestcmpts[#]]<=1&]],{n,0,5}]

A326336 Number of set partitions of {1..n} whose capturing blocks are connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 24, 100, 458, 2279, 12270
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2019

Keywords

Comments

Two blocks are capturing if they are of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. A set partition has its capturing blocks connected if the graph whose vertices are the blocks and whose edges are capturing pairs of blocks is connected.

Examples

			The a(0) = 1 through a(6) = 24 set partitions:
  {}  {1}  {12}  {123}  {1234}    {12345}    {123456}
                        {14}{23}  {125}{34}  {1236}{45}
                                  {134}{25}  {1245}{36}
                                  {135}{24}  {1246}{35}
                                  {14}{235}  {125}{346}
                                  {145}{23}  {1256}{34}
                                  {15}{234}  {126}{345}
                                             {134}{256}
                                             {1345}{26}
                                             {1346}{25}
                                             {135}{246}
                                             {1356}{24}
                                             {136}{245}
                                             {14}{2356}
                                             {145}{236}
                                             {1456}{23}
                                             {146}{235}
                                             {15}{2346}
                                             {156}{234}
                                             {16}{2345}
                                             {15}{26}{34}
                                             {16}{23}{45}
                                             {16}{24}{35}
                                             {16}{25}{34}
		

Crossrefs

Simple graphs whose capturing blocks are connected are A326330.
Set partitions whose crossing blocks are connected are A099947.
Set partitions whose nesting blocks are connected are A326335.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    captcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],capXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[captcmpts[#]]<=1&]],{n,0,6}]

A326338 Number of simple graphs with vertices {1..n} whose weakly nesting edges are connected.

Original entry on oeis.org

1, 1, 2, 7, 48, 781, 27518
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. A graph has its weakly nesting edges connected if the graph whose vertices are the edges and whose edges are weakly nesting pairs of edges is connected.

Crossrefs

The inverse binomial transform is the covering case A326337.
The non-weak case is A326330.

Programs

  • Mathematica
    wknXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[Union[List/@#,Select[Subsets[#,{2}],wknXQ]]]]<=1&]],{n,0,5}]

A224922 O.g.f. satisfies: A(x) = Sum_{n>=0} A000110(n)*x^n*A(x)^n, where A000110 are the Bell numbers.

Original entry on oeis.org

1, 1, 3, 12, 56, 288, 1586, 9201, 55675, 349159, 2260209, 15063260, 103201968, 726380164, 5252083746, 39029442336, 298340012448, 2348365289852, 19058365017840, 159659978176454, 1382148854813222, 12373696834781918, 114606230432935860, 1098199966940781258
Offset: 0

Views

Author

Paul D. Hanna, Apr 19 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 288*x^5 + 1586*x^6 +...
The o.g.f. satisfies:
(1) A(x) = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 15*x^4*A(x)^4 + 52*x^5*A(x)^5 + 203*x^6*A(x)^6 +...+ A000110(n)*x^n*A(x)^n +...
(2) A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)^2/((1-x*A(x))*(1-2*x*A(x))) + x^3*A(x)^3/((1-x*A(x))*(1-2*x*A(x))*(1-3*x*A(x))) + x^4*A(x)^4/((1-x*A(x))*(1-2*x*A(x))*(1-3*x*A(x))*(1-4*x*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0, 0, polcoeff( 1/x*serreverse(x/serlaplace(exp(exp(x+x*O(x^n))-1))), n))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*A^m/prod(k=1, m,1-k*x*A +x*O(x^n)) )); polcoeff(A, n)}
    for(n=0,30,print1(a(n), ", "))

Formula

O.g.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1 - k*x*A(x)).
O.g.f. satisfies: A(x) = 1/(1 - x*A(x)/(1 - 1*x*A(x)/(1 - x*A(x)/(1 - 2*x*A(x)/(1 - x*A(x)/(1 - 3*x*A(x)/(1 - x*A(x)/(1 - 4*x*A(x)/(1 - ... ))))))))), a continued fraction.
a(n) = [x^n] ( Sum_{k>=0} A000110(k)*x^k )^(n+1) / (n+1).

A268815 Number of purely crossing + partitions of [n].

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 5, 19, 76, 360, 1792, 9634, 55286, 336396, 2162554, 14629720, 103818489, 770678553, 5969822993, 48148947503, 403545713463, 3508356996105, 31587389832791, 294087418038113, 2827471212909189, 28037001032306431, 286398141349873925, 3010540174760962975
Offset: 0

Views

Author

Michel Marcus, Feb 14 2016

Keywords

Comments

For the definition of these special purely crossing partitions refer to Dykema link (see PC+(n) Definition 2.1 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
a(n) is the number of topologically connected (A099947) set partitions of {1,...,n} with no successive elements in the same block. For example, the a(4) = 1 through a(7) = 19 set partitions are:
{{13}{24}} {{135}{24}} {{135}{246}} {{1357}{246}}
{{13}{25}{46}} {{13}{246}{57}}
{{14}{25}{36}} {{13}{257}{46}}
{{14}{26}{35}} {{135}{26}{47}}
{{15}{24}{36}} {{135}{27}{46}}
{{136}{24}{57}}
{{136}{25}{47}}
{{137}{25}{46}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{147}{25}{36}}
{{147}{26}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{157}{24}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)

Examples

			G.f.: A(x) = 1 + x + x^4 + x^5 + 5*x^6 + 19*x^7 + 76*x^8 + 360*x^9 + 1792*x^10 +...
		

Crossrefs

Programs

  • Mathematica
    n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w] /w)-1, x/(1+x) + O[x]^n]; CoefficientList[B, x] // Rest (* Jean-François Alcover, Feb 16 2016, adapted from K. J. Dykema's code *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
    Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x) + O(x^nn)); Vec(b);}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)*A - k*x +x*O(x^n)) )); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
    
  • PARI
    {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
    {Bell(n) = sum(k=0,n, Stirling2(n, k) )}
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x)*A +x*O(x^n))^m) ); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016

Formula

G.f.: G(x) satisfies C(x) = G(x/1-x) where C(x) is the g.f. of A099947 (see B(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies
(1) A(x) = Sum_{n>=0} A000110(n)*x^n/((1+x)^n*A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)*A(x) - k*x).
(3) A(x) = 1/(1 - x/((1+x)*A(x) - 1*x/(1 - x/((1+x)*A(x) - 2*x/(1 - x/((1+x)*A(x) - 3*x/(1 - x/((1+x)*A(x) - 4*x/(1 - x/((1+x)*A(x) - ... )))))))))), a continued fraction. (End)

A324326 Number of crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 36, 0, 14, 0, 0, 0, 25, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 103, 0, 0, 0, 0, 0, 0, 0, 75
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Examples

			The a(36) = 10 crossing multiset partitions of {1,1,2,2,3,4}:
  {{1,3},{1,2,2,4}}
  {{2,4},{1,1,2,3}}
  {{1,1,3},{2,2,4}}
  {{1,2,3},{1,2,4}}
  {{1},{1,3},{2,2,4}}
  {{1},{2,4},{1,2,3}}
  {{2},{1,3},{1,2,4}}
  {{2},{1,1,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1},{2},{1,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324325(n) = A318284(n).
Previous Showing 21-30 of 35 results. Next