cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A110576 Sequence is {a(0,n)}, where a(m,0)=1, a(m,n) = a(m,n-1) + a(m-1,n), a(0,n+1) = a(n,n).

Original entry on oeis.org

1, 1, 2, 7, 29, 132, 648, 3407, 19109, 113946, 719896, 4802318, 33712717, 248285282, 1912928549, 15379305080, 128729241725, 1119519156562, 10097102345993, 94285391374568, 910145431036423, 9069616636456648, 93179779321299479
Offset: 0

Views

Author

Leroy Quet, Jul 28 2005

Keywords

Comments

Equals eigensequence of triangle A100100. - Gary W. Adamson, Feb 02 2009

Examples

			a(0,n): 1, 1, 2, 7, 29
a(1,n): 1, 2, 4, 11
a(2,n): 1, 3, 7, 18
a(3,n): 1, 4, 11, 29
Since a(3,3) = 29, a(0,4) also is 29.
		

Crossrefs

Programs

  • Mathematica
    a[0, 0] := 1; a[0, 1] := 1; a[0, n_] := a[0, n] = Sum[Binomial[2*n - k - 3, n - 2]*a[0, k], {k, 0, n - 1}]; Table[a[0,n], {n,0,50}] (* G. C. Greubel, Aug 31 2017 *)

Formula

a(0, n+1) = Sum_{k=0..n} binomial(2*n-k-1, n-1)*a(0, k), with a(0,0) = 1.

Extensions

More terms from Ryan Propper, Sep 25 2005

A262737 O.g.f. exp( Sum_{n >= 1} A262732(n)*x^n/n ).

Original entry on oeis.org

1, 8, 95, 1336, 20642, 338640, 5791291, 102108760, 1842857390, 33879118384, 632210693270, 11944142806064, 228010741228740, 4391334026631072, 85221618348230355, 1664901954576830360, 32716286416687895862, 646228961799752926320, 12823701194384778672322
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) for k = 3. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262738 (k = 4), A262739 (k = 5), A262740 (k = 6), A262732.

Programs

  • Maple
    A262737 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(5*k)!/GAMMA(5*k/2 + 1)*GAMMA(3*k/2 + 1)/(3*k)!*A262737(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262737(n), n = 0 .. 20);
  • PARI
    a(n) = sum(k=0, n, binomial(5*(n+1),k)*binomial(4*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(5*n,i)*binomial(4*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!*x^n/n ) = 1 + 8*x + 195*x^2 + 1336*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A262732.
O.g.f. is the series reversion of x*(1 - x)^3/(1 + x)^5.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k!*(5*k)!/GAMMA(5*k/2+1)*GAMMA(3*k/2+1)/(3*k)! * a(n-k).

A262738 O.g.f. exp( Sum_{n >= 1} A211419(n)*x^n/n ).

Original entry on oeis.org

1, 10, 149, 2630, 51002, 1050132, 22539085, 498732014, 11296141454, 260613866380, 6103074997890, 144696786555580, 3466352150674324, 83776927644646952, 2040261954214847421, 50018542073019175806, 1233419779839067305350, 30572886836581693309020
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) at k = 4. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262739 (k = 5), A262740 (k = 6).

Programs

  • Maple
    A262738 := proc(n) option remember; if n = 0 then 1 else add((6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*A262738(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262738(n), n = 0..20);
  • PARI
    a(n) = sum(k=0, n, binomial(6*(n+1),k)*binomial(5*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(6*n,i)*binomial(5*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} (6*n)!*(2*n)!/((4*n)!*(3*n)!*n!)*x^n/n ) = 1 + 10*x + 149*x^2 + 2630*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A211419.
O.g.f. is the series reversion of x*(1 - x)^4/(1 + x)^6.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} (6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*a(n-k).

A262739 O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).

Original entry on oeis.org

1, 12, 215, 4564, 106442, 2635704, 68031147, 1810302340, 49308457334, 1368019979976, 38525145673126, 1098380420669000, 31641932951483220, 919622628946689648, 26931762975278938035, 793967020231145502564, 23543663463050594677310, 701763102761640853890600, 21014048069544552257072530, 631868353403527700756671320, 19070677448561228207945931276
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) when k = 5. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A262733, A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262738 (k = 4), A262740 (k = 6).

Programs

  • Maple
    A262739 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(7*k)!/GAMMA(7*k/2 + 1)*GAMMA(5*k/2 + 1)/(5*k)!*A262739(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262739(n), n = 0..20);
  • PARI
    a(n) = sum(k=0, n, binomial(7*(n+1),k)*binomial(6*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(7*n,i)*binomial(6*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A262733.
O.g.f. is the series reversion of x*(1 - x)^5/(1 + x)^7,
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k! * (7*k)!/(7*k/2)! * (5*k/2)!/(5*k)!*a(n-k).

A262740 O.g.f. exp( Sum_{n >= 1} A211421(n)*x^n/n ).

Original entry on oeis.org

1, 14, 293, 7266, 197962, 5726364, 172662765, 5367187226, 170772853790, 5534640052292, 182070248073826, 6063785526898644, 204055962203476788, 6927718839334775608, 236994877398511998717, 8161492483543100398410, 282705062046649346154006, 9843330120848835962213940
Offset: 0

Views

Author

Peter Bala, Sep 29 2015

Keywords

Comments

O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) at k = 6. See the cross references for related sequences obtained from other values of k.

Crossrefs

Cf. A211421, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262738 (k = 4), A262739 (k = 5).

Programs

  • Maple
    #A262740
    A262740 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(8*k)!/(4*k)!*(3*k)!/(6*k)!*A262740(n-k), k = 1 .. n)/n end if; end proc:
    seq(A262740(n), n = 0..17);
  • PARI
    a(n) = sum(k=0, n, binomial(8*(n+1),k)*binomial(7*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015

Formula

a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(8*n,i)*binomial(7*n-i-2,n-i-1).
O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (8*n)!/(4*n)! * (3*n)!/(6*n)!*x^n/n ) = 1 + 14*x + 293*x^2 + 7266*x^3 + ....
1 + x*A'(x)/A(x) is the o.g.f. for A211421.
O.g.f. is the series reversion of x*(1 - x)^6/(1 + x)^8.
a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k! * (8*k)!/(4*k)! * (3*k)!/(6*k)!*a(n-k).

A262145 O.g.f.: exp( Sum_{n >= 1} A000182(n+1)*x^n/n ), where A000182 is the sequence of tangent numbers.

Original entry on oeis.org

1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, 3287849716332, 501916845156012, 93337607623037544, 20766799390944491100, 5446109742113077482456, 1662395457873577922274888
Offset: 0

Views

Author

Peter Bala, Sep 13 2015

Keywords

Comments

It appears that the sequence has integer entries. Calculation suggests the following conjecture: the expansion of exp( Sum_{n >= 1} A000182(n + m)*x^n/n ) has integer coefficients for m = 1, 2, 3, .... This is the case m = 1. Cf. A255881 and A255895.
First row of square array A262144.

Crossrefs

Cf. A000182, A255881, A255895, A262144 (first row).

Programs

  • Maple
    #A262145
    #define tangent numbers A000182
    A000182 := n -> (1/2) * 2^(2*n) * (2^(2*n) - 1) * abs(bernoulli(2*n))/n:
    a := proc (n) option remember;
    if n = 0 then 1 else
      add(A000182(k+1)*a(n-k), k = 1 .. n)/n
    end if;
    end proc:
    seq(a(n), n = 0 .. 15);
  • Mathematica
    max = 15; CoefficientList[E^Sum[(-1)^n*2^(2*n+1)*(4^(n+1)-1)*BernoulliB[2*(n+1)]*x^n / (n*(n+1)), {n, 1, max}] + O[x]^max, x] (* Jean-François Alcover, Sep 18 2015 *)
  • Sage
    def a_list(n):
        T = [0]*(n+2); T[1] = 1
        for k in range(2, n+1): T[k] = (k-1)*T[k-1]
        for k in range(2, n+1):
            for j in range(k, n+1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
        @cached_function
        def a(n): return sum(T[k+1]*a(n-k) for k in (1..n))//n if n> 0 else 1
        return [a(k) for k in range(n)]
    a_list(15) # Peter Luschny, Sep 18 2015

Formula

Recurrence: a(n) = 1/n * Sum_{k = 1..n} A000182(k+1)*a(n-k).

A100217 Diagonal sums of a binomial number triangle.

Original entry on oeis.org

1, 1, 4, 12, 42, 149, 543, 2007, 7501, 28265, 107196, 408653, 1564506, 6010964, 23164467, 89501021, 346588092, 1344804060, 5227147969, 20349230347, 79330194097, 309653982738, 1210071825851, 4733665388134, 18535196846866
Offset: 0

Views

Author

Paul Barry, Nov 08 2004

Keywords

Comments

Diagonal sums of A100100.

Crossrefs

Cf. A100100.

Programs

  • Magma
    [(&+[Binomial(2*n-3*k-1, n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Mar 28 2024
    
  • Mathematica
    A100217[n_]:= Sum[Binomial[2*n-3*k-1,n-2*k], {k,0,Floor[n/2]}];
    Table[A100217[n], {n,0,40}] (* G. C. Greubel, Mar 28 2024 *)
  • SageMath
    [sum(binomial(2*n-3*k-1, n-2*k) for k in range(1+n//2)) for n in range(41)] # G. C. Greubel, Mar 28 2024

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1, n-2*k).

A262144 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} d(n,i+1)*x^i/i ) for n >= 1, where d(n,k) is Shanks's array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 2, 1, 11, 10, 1, 46, 241, 108, 1, 128, 2739, 10411, 2214, 1, 272, 16384, 265244, 836321, 75708, 1, 522, 64964, 2883584, 45094565, 112567243, 3895236, 1, 904, 212325, 18852096, 822083584, 12975204810, 22949214033
Offset: 1

Views

Author

Peter Bala, Sep 18 2015

Keywords

Comments

Shanks's array d(n,k) n >= 1, k >= 1, is A235606.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 1, 2, ... and for each n >= 1, the expansion of exp( Sum_{i >= 1} d(n,i + r)*x^i/i ) has integer coefficients. This is the case r = 1.
For the similarly defined array associated with Shanks' c(n,k) array see A262143.

Examples

			The triangular array begins
1
1   2
1  11     10
1  46    241      108
1 128   2739    10411      2214
1 272  16384   265244    836321       75708
1 522  64964  2883584  45094565   112567243     3895236
1 904 212325 18852096 822083584 12975204810 22949214033 ...
The square array begins (row indexing n starts at 1)
1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ...
1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ...
1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ...
1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ...
1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ...
1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ...
1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
		

Crossrefs

Cf. A000182 (d(1,n)), A000464 (d(2,n)), A000191 (d(3,n)), A000318 (d(4,n)), A000320 (d(5,n)), A000411 (d(6,n)), A064072 (d(7,n)), A235605, A235606, A262143, A262145 (row 1 of square array).

A307495 Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k.

Original entry on oeis.org

1, 1, 3, 12, 57, 312, 1950, 13848, 111069, 998064, 9957186, 109305240, 1309637274, 17006109072, 237888664572, 3566114897520, 57030565449765, 969154436550240, 17439499379433690, 331268545604793240, 6624013560942038670, 139080391965533653200, 3059323407592802838180, 70355685298375014175440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000142 (factorial numbers).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence of factorial numbers in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
2 3 3
6 9 12 12
24 33 45 57 57
120 153 198 255 312 312
...
Alternatively, the sequence can be obtained by multiplying the sequence of factorial numbers by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]

Formula

G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0.
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Aug 10 2019

A191528 Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k returns to the axis.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 6, 3, 1, 10, 6, 3, 1, 20, 10, 4, 1, 35, 20, 10, 4, 1, 70, 35, 15, 5, 1, 126, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 462, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1
Offset: 0

Views

Author

Emeric Deutsch, Jun 06 2011

Keywords

Comments

Row n contains 1+floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) =A001405(n).
T(n,0) = A001405(n-1).
Rows 0, 2, 4, ... form triangle A100100.
Rows 1, 3, 5, ... form triangle A092392.
Sum_{k>=0} k*T(n,k) = A037955(n).
From Roger Ford, Oct 16 2020: (Start)
This is an empirical observation. T(n,k) = the number of different semi-meander arch depth models with n+2 top arches and k+1 arches at depth 0. T(3,1) = the number of different semi-meander arch depth models with 5 top arches and 2 arches at depth 0.
Example: The depth of a semi-meander arch is the number of covering arches directly above the arch. The arch depth model is the number of arches at each depth starting at 0 for a specific semi-meander. The following is the arch depth models for semi-meanders with 5 top arches.
/\ /\
//\\ / \
///\\\ depth //\ \ depth
////\\\\ /\ (0)(1)(2)(3) ///\\/\\ /\ (0)(1)(2)
depth 0123 0 model= 2 1 1 1 012 1 0 model= 2 2 1
/\
//\\ /\ depth /\ /\ depth
///\\\ //\\ (0)(1)(2) //\\ //\\ /\ (0)(1)
depth 012 01 model= 2 2 1 01 01 0 model= 3 2
/\
/ \ depth
//\/\\ /\ /\ (0)(1)
depth 01 1 0 0 model= 3 2
There are 5 more semi-meanders with 5 top arches. They are reflections of the above semi-meanders over a center vertical line and they yield the same arch depth models as the semi-meanders above.
T(3,1) = 2 different models= 2 2 1 and 2 1 1 1;
T(3,2) = 1 model= 3 2 (End).

Examples

			T(6,2)=3 because we have U(D)U(D)UU, U(D)UUD(D), and UUD(D)U(D), where U=(1,1) and D=(1,-1) (the return steps to the axis are shown between parentheses).
Triangle starts:
   1:
   1;
   1, 1;
   2, 1;
   3, 2, 1;
   6, 3, 1;
  10, 6, 3, 1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k <= floor((1/2)*n) then binomial(n-k-1, ceil((1/2)*n)-1) else 0 end if end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Binomial[n-k-1,Ceiling[(n/2)-1]],{n,0,16},{k,0,Floor[n/2]}]] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    tabf(nn) = if(n==0, print1(1,", "), {for (n=1, nn, for(k=0, floor(n/2), print1(binomial(n-k-1, ceil((n/2)-1)),", ");); print();); });
    tabf(16); \\ Indranil Ghosh, Mar 05 2017

Formula

T(n,k) = binomial(n-k-1, ceiling(n/2)-1) if 0 <= k <= floor(n/2).
G.f.: G(t,z) = 1/((1-z*c)*(1-t*z^2*c)), where c = (1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2.
Previous Showing 11-20 of 21 results. Next