cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A276511 Primes that are equal to the sum of the prime factors of some perfect number.

Original entry on oeis.org

5, 11, 139, 170141183460469231731687303715884105979
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 06 2016

Keywords

Comments

Primes of the form 2^n + 2*n - 3 such that 2^n - 1 is also prime.
Conjectures (defining x = 170141183460469231731687303715884105727 = A007013(4)):
(1) 2^x + 2*x - 3 is in this sequence;
(2) a(5) = 2^x + 2*x - 3 (see comments of A276493);
(3) primes of A007013 are Mersenne prime exponents A000043, i.e., x is new exponent in A000043.

Examples

			a(1) = 5 because 2^2-1 = 3 and 2^2+2*2-3 = 5 are primes,
a(2) = 11 because 2^3-1 = 7 and 2^3+2*3-3 = 11 are primes,
a(3) = 139 because 2^7-1 = 127 and 2^7+2*7-3 = 139 are primes.
		

Crossrefs

Programs

  • Magma
    [2^n+2*n-3: n in [1..200] | IsPrime(2^n-1) and IsPrime(2^n+2*n-3)];
  • Maple
    A276511:=n->`if`(isprime(2^n-1) and isprime(2^n+2*n-3), 2^n+2*n-3, NULL): seq(A276511(n), n=1..10^3); # Wesley Ivan Hurt, Sep 07 2016

Extensions

Name suggested by Michel Marcus, Sep 07 2016

A276687 Number of prime plane trees of weight prime(n).

Original entry on oeis.org

1, 1, 2, 4, 11, 30, 122, 336, 1412, 15129, 44561, 417542, 2479120, 7540843, 35983502, 451454834, 5313515136, 16809858904, 190077477328, 1124302066470, 3521811953565, 38563707677633, 240966297786218, 3192420711942298, 95433674596402663, 567734580765228356
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2016

Keywords

Comments

A prime plane tree is either (case 1) a prime number, or (case 2) a sequence of prime plane trees whose weights are an integer partition of a prime number, where the weight of a tree is the sum of weights of its branches. Prime plane trees are "multichains" in the multiorder of integer partitions of prime numbers into prime parts (A056768).

Examples

			The a(5) = 11 prime plane trees of weight A000040(5) = 11 are: {11, (3,3,5), (3,3,(2,3)), (2,2,7), (2,2,(2,5)), (2,2,(2,(2,3))), (2,2,(2,2,3)), (2,3,3,3), (2,2,2,5), (2,2,2,(2,3)), (2,2,2,2,3)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=2, 0,
           b(n, prevprime(i)))+`if`(i>n, 0, b(n-i, i)*(1+
          `if`(i>2, b(i, prevprime(i)), 0))))
        end:
    a:= n-> `if`(n<3, 1, 1+b(ithprime(n), ithprime(n-1))):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 15 2016
  • Mathematica
    n=20;
    ser=Product[1/(1-c[Prime[i]]*x^Prime[i]),{i,1,n}];
    sys=Table[c[Prime[i]]==Expand[SeriesCoefficient[ser,{x,0,Prime[i]}]-c[Prime[i]]+1],{i,1,n}];
    Block[{c},Set@@@sys]

A343016 a(n) is the least nonnegative m such that m*n + A001414(n) is not prime.

Original entry on oeis.org

0, 1, 1, 0, 1, 5, 1, 0, 0, 2, 1, 4, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 3, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 6, 0, 0, 0, 0, 0, 2, 1, 0, 1
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 02 2021

Keywords

Comments

a(n) <= A001414(n).
a(n) = 0 iff n is not in A100118.
a(n) = 1 if n is prime.
a(n) >= 3 iff n is in A342302.

Examples

			a(6) = 5 because A001414(6) = 5 and 5, 6+5=11, 2*6+5=17, 3*6+5=23, and 4*6+5=29 are prime but 5*6+5=35 is not.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local s, t, k;
      s:= add(t[1]*t[2], t = ifactors(n)[2]);
      for k from 0 do if not isprime(k*n+s) then return k fi od;
    end proc:
    map(f, [$1..100]);
  • Mathematica
    Array[Block[{m = 0, k = Plus @@ Times @@@ FactorInteger[#]}, While[PrimeQ[# m + k], m++]; m] &, 105] (* Michael De Vlieger, Apr 13 2021 *)

A134335 Numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer, but not a prime.

Original entry on oeis.org

15, 35, 39, 42, 50, 51, 55, 65, 77, 78, 87, 91, 92, 95, 110, 111, 114, 115, 119, 123, 140, 141, 143, 155, 159, 161, 164, 170, 183, 185, 186, 187, 189, 201, 203, 204, 209, 215, 219, 221, 222, 225, 230, 235, 236, 242, 247, 258, 259, 264, 267, 284, 285, 287, 290
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(1) = 15, since 15 = 3*5 and (3+5)/2 = 4 is not prime.
a(5) = 50, since 50 = 2*5*5 and (2+5+5)/3 = 4 is not prime.
		

Crossrefs

Programs

  • Mathematica
    fp[{a_,b_}]:=a*b;s={};Do[If[q=Total[fp/@FactorInteger[n]]/Total[Last/@FactorInteger[n]];IntegerQ[q]&&!PrimeQ[q],AppendTo[s,n]],{n,2,290}];s (* James C. McMahon, Apr 05 2025 *)

Extensions

Definition clarified by the author, May 06 2013

A213016 Numbers n such that the sum of prime factors of n (counted with multiplicity) is 3 times a prime.

Original entry on oeis.org

8, 9, 14, 20, 24, 26, 27, 38, 44, 62, 68, 74, 105, 112, 116, 125, 126, 134, 150, 160, 180, 188, 192, 195, 208, 212, 216, 218, 231, 234, 243, 254, 275, 278, 314, 330, 332, 343, 352, 356, 362, 396, 398, 422, 428, 465, 483, 490, 496, 548, 558, 575, 588, 609, 614
Offset: 1

Views

Author

Michel Lagneau, Jun 02 2012

Keywords

Comments

The numbers A100118(n)^3 are in the sequence.

Examples

			44 is in the sequence because 44 = 2^2 * 11 => sum of prime factors = 2*2+11 = 15 = 3*5 where 5 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A:= proc(n) local e, j; e := ifactors(n)[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end: for m from 1 to 3000 do: if type(A(m)/3,prime)= true then printf(`%d, `,m):else fi:od:
  • Mathematica
    L = {}; Do[ww = Transpose[FactorInteger[k]]; w = ww[[1]].ww[[2]]; If[PrimeQ[w/3], AppendTo[L, k]], {k, 2, 1000}]; L
    Select[Range[700],PrimeQ[Total[Times@@@FactorInteger[#]]/3]&] (* Harvey P. Dale, Nov 23 2022 *)

Formula

sopfr(n) = 3*p, p prime.

A213020 Smallest number k such that the sum of prime factors of k (counted with multiplicity) is n times a prime.

Original entry on oeis.org

2, 4, 8, 15, 21, 35, 33, 39, 65, 51, 57, 95, 69, 115, 86, 87, 93, 155, 212, 111, 122, 123, 129, 215, 141, 235, 158, 159, 265, 371, 177, 183, 194, 427, 201, 335, 213, 219, 365, 511, 237, 395, 249, 415, 446, 267, 278, 623, 964, 291, 302, 303, 309, 515, 321, 327
Offset: 1

Views

Author

Michel Lagneau, Jun 02 2012

Keywords

Comments

Smallest k such that sopfr(k) = n*p, p prime.

Examples

			a(19) = 212 because 212 = 2^2 * 53 => sum of prime factors = 2*2+53 = 57 = 19*3 where 3 is prime.
		

Crossrefs

Programs

  • Maple
    sopfr:= proc(n) option remember;
              add(i[1]*i[2], i=ifactors(n)[2])
            end:
    a:= proc(n) local k, p;
          for k from 2 while irem (sopfr(k), n, 'p')>0 or
            not isprime(p) do od; k
        end:
    seq (a(n), n=1..100); # Alois P. Heinz, Jun 03 2012
  • Mathematica
    sopfr[n_] := Sum[Times @@ f, {f, FactorInteger[n]}];
    a[n_] := For[k = 2, True, k++, If[PrimeQ[sopfr[k]/n], Return[k]]];
    Array[a, 100] (* Jean-François Alcover, Nov 13 2020 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(k=1,#f~,f[k,1]*f[k,2]); \\ A001414
    isok(k, n) = my(dr = divrem(sopfr(k), n)); (dr[2]==0) && isprime(dr[1]);
    a(n) = {my(k=2); while (!isok(k, n), k++); k;} \\ Michel Marcus, Nov 13 2020

A274718 Set x = n. Then a(n) is the number of iterations of successive applications of the map x = A001414(x) that leave x composite, or a(n) = -1 if x always remains composite.

Original entry on oeis.org

-1, 0, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 2, 1, 0, 0, 2, 1, 3, 2, 0, 0, 1, 0, 1, 3, 0, 1, 1, 0, 2, 3, 0, 0, 1, 0, 3, 0, 2, 0, 0, 3, 1, 3, 0, 0, 0, 3, 0, 1, 0, 0, 1, 0, 4, 0, 1, 3, 3, 0, 2, 4, 3, 0, 1, 0, 4, 0, 0, 3, 3, 0, 0, 1, 0, 0, 3, 1, 1, 2, 0, 0, 0, 3, 3, 1, 4, 3, 0, 0, 3, 0, 3, 0, 1, 0, 0, 3
Offset: 1

Views

Author

Felix Fröhlich, Jul 03 2016

Keywords

Comments

a(1) and a(4) are the only terms with a value of -1.
a(n) = 0 iff n is a term of A100118.

Examples

			For n = 26: A001414(26) = 15, A001414(15) = 8, A001414(8) = 6 and A001414(6) = 5. 5 is prime and so 26 remains composite through 3 iterations of the map given in the definition, therefore a(26) = 3.
		

Crossrefs

Programs

  • Mathematica
    lim = 10^4; Table[Length@ NestWhileList[If[# == 1, 0, Total@ Flatten[Table[#1, {#2}] & @@@ FactorInteger@ #]] &, n, ! PrimeQ@ # &, 1, lim] - 2 /. {-1 -> 0, lim - 1 -> -1}, {n, 86}] (* Michael De Vlieger, Jul 03 2016 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(i=1, #f[, 1], f[i, 1]*f[i, 2]) /* after Charles R Greathouse IV in A050703 */
    a(n) = my(i=0, s=sopfr(n)); while(1, if(ispseudoprime(s), return(i)); if(s==sopfr(s), return(-1)); s=sopfr(s); i++)

Extensions

More terms from Antti Karttunen, Mar 07 2018

A316228 Numbers whose Fermi-Dirac prime factorization sums to a Fermi-Dirac prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 31, 34, 36, 37, 39, 40, 41, 43, 46, 47, 48, 49, 52, 53, 55, 56, 58, 59, 61, 63, 66, 67, 71, 73, 76, 79, 81, 82, 83, 88, 89, 90, 94, 97, 100, 101, 103, 104, 107, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0. Every positive integer has a unique factorization into distinct Fermi-Dirac primes.

Examples

			Sequence of multiarrows in the form "number: sum <= factors" begins:
   2:  2 <= {2}
   3:  3 <= {3}
   4:  4 <= {4}
   5:  5 <= {5}
   6:  5 <= {2,3}
   7:  7 <= {7}
   9:  9 <= {9}
  10:  7 <= {2,5}
  11: 11 <= {11}
  12:  7 <= {3,4}
  13: 13 <= {13}
  14:  9 <= {2,7}
  16: 16 <= {16}
  17: 17 <= {17}
  18: 11 <= {2,9}
  19: 19 <= {19}
  20:  9 <= {4,5}
  22: 13 <= {2,11}
  23: 23 <= {23}
  24:  9 <= {2,3,4}
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    Select[Range[2,200],Length[FDfactor[Total[FDfactor[#]]]]==1&]

A316525 Numbers whose average of prime factors is prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 21, 23, 25, 27, 29, 31, 32, 33, 37, 41, 43, 44, 47, 49, 53, 57, 59, 60, 61, 64, 67, 68, 69, 71, 73, 79, 81, 83, 85, 89, 93, 97, 101, 103, 105, 107, 109, 112, 113, 116, 121, 125, 127, 128, 129, 131, 133, 137, 139
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Comments

Prime factors counted with multiplicity. - Harvey P. Dale, Sep 28 2018

Examples

			60 = 2*2*3*5 has average of prime factors (2+2+3+5)/4 = 3, which is prime, so 60 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimeQ[Mean[If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[p,{k}]]]]]]&]
    Select[Range[200],PrimeQ[Mean[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ #]]]]&] (* Harvey P. Dale, Sep 28 2018 *)
  • PARI
    isok(n) = {my(f=factor(n)); iferr(isprime(sum(k=1, #f~, f[k,1]*f[k,2])/sum(k=1, #f~, f[k,2])), E, 0);} \\ Michel Marcus, Jul 06 2018

A337047 Numbers k such that A001414(k) and A001414(A004086(k)) are twin primes p, p+2.

Original entry on oeis.org

405, 412, 850, 25315, 49419, 50127, 224315, 293394, 308700, 697136, 801350, 811910, 997425, 1118520, 1152000, 1177250, 1550520, 1659350, 1725332, 1739640, 1824500, 1976895, 2141150, 2580640, 2580831, 3530466, 3718376, 4050405, 4459455, 4536532, 4577732, 4832796, 5173100, 5510287, 5601570, 5603989, 5609439
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 12 2020

Keywords

Examples

			a(3)=850 is in the sequence because A001414(850)=2+5+5+17=29, A001414(58)=2+29=31, and (29,31) is a pair of twin primes.
		

Crossrefs

Cf. A001097, A001414, A004086. Subsequence of A100118.

Programs

  • Maple
    revdigs:= proc(n) local L,k;
      L:= convert(n,base,10);
      add(L[-k]*10^(k-1),k=1..nops(L))
    end proc:
    filter:= proc(n) local a,b;
      a:= convert(map(convert,ifactors(n)[2],`*`),`+`);
      if not isprime(a) then return false fi;
      b:= convert(map(convert,ifactors(revdigs(n))[2],`*`),`+`);
      b = a+2 and isprime(b)
    end proc:
    select(filter, [$1 .. 10^7]);
Previous Showing 21-30 of 33 results. Next