cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A135588 Number of symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 6, 20, 74, 302, 1314, 6122, 29982, 154718, 831986, 4667070, 27118610, 163264862, 1013640242, 6488705638, 42687497378, 288492113950, 1998190669298, 14177192483742, 102856494496050, 762657487965086, 5771613810502002, 44555989658479726, 350503696871063138
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2008, Mar 03 2008, Mar 04 2008

Keywords

Examples

			From _Gus Wiseman_, Nov 14 2018: (Start)
The a(4) = 20 matrices:
  [11]
  [11]
.
  [110][101][100][100][011][010][010][001][001]
  [100][010][011][001][100][110][101][010][001]
  [001][100][010][011][100][001][010][101][110]
.
  [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
  [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
  [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
  [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[(1+x)^k*(1+x^2)^(k*(k-1)/2)/2^(k+1),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 02 2014 *)
    Join[{1},  Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}]] (* Gus Wiseman, Nov 14 2018 *)

Formula

G.f.: Sum_{n>=0} (1+x)^n*(1+x^2)^binomial(n,2)/2^(n+1).
G.f.: Sum_{n>=0} (Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(1+x)^k*(1+x^2)^binomial(k,2)).

A321446 Number of (0,1)-matrices with n ones, no zero rows or columns, and distinct rows and columns.

Original entry on oeis.org

1, 1, 2, 10, 72, 624, 6522, 80178, 1129368, 17917032, 316108752, 6138887616, 130120838400, 2989026225696, 73964789192400, 1961487062520720, 55495429438186920, 1668498596700706440, 53122020640948010640, 1785467619718933936560, 63175132023953553400440
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Examples

			The a(3) = 10 matrices:
  [1 1] [1 1] [1 0] [0 1]
  [1 0] [0 1] [1 1] [1 1]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]]]&]],{n,6}]
  • PARI
    \\ Q(m, n, wf) defined in A321588.
    seq(n)={my(R=vectorv(n,m,Q(m,n,w->1 + y^w + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(R)))} \\ Andrew Howroyd, Jan 24 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 20 2024

A321720 Number of non-normal (0,1) semi-magic squares with sum of entries equal to n.

Original entry on oeis.org

1, 1, 2, 6, 25, 120, 726, 5040, 40410, 362881, 3630840, 39916800, 479069574, 6227020800, 87181402140, 1307674370040, 20922977418841, 355687428096000, 6402388104196400, 121645100408832000, 2432903379962038320, 51090942171778378800, 1124000886592995642000, 25852016738884976640000
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer matrix with row sums and column sums all equal to d, for some d|n.

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

a(p) = p! for p prime as the squares are all permutation matrices of order p and a(n) >= n! for n > 1 (see comments in A321717 and A321719). - Chai Wah Wu, Jan 13 2019
a(n) = Sum_{d|n, d<=n/d} A008300(n/d, d) for n > 0. - Andrew Howroyd, Apr 11 2020

Extensions

a(7) from Chai Wah Wu, Jan 13 2019
a(8)-a(15) from Chai Wah Wu, Jan 14 2019
a(16)-a(21) from Chai Wah Wu, Jan 16 2019
Terms a(22) and beyond from Andrew Howroyd, Apr 11 2020

A321587 Number of (0,1)-matrices with n ones, no zero rows or columns, and distinct rows.

Original entry on oeis.org

1, 1, 3, 17, 129, 1227, 14123, 190265, 2934359, 50975647, 984801759, 20941104299, 486007744671, 12223797601887, 331190083773701, 9616356919931711, 297887922137531747, 9805965265937326129, 341827167387114704421, 12579123760272833723975, 487315396984696657840761
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

Also number of colored compositions of n using all colors of an initial interval of the color palette such that all parts have different color patterns and the patterns for parts i have i distinct colors in increasing order. a(3) = 17: 2ab1a, 2ab1b, 1a2ab, 1b2ab, 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. - Alois P. Heinz, Sep 17 2019

Examples

			The a(3) = 17 matrices:
  [1 1 1]
.
  [1 1] [1 1] [1 1 0] [1 0 1] [1 0] [1 0 0] [0 1 1] [0 1] [0 1 0] [0 0 1]
  [1 0] [0 1] [0 0 1] [0 1 0] [1 1] [0 1 1] [1 0 0] [1 1] [1 0 1] [1 1 0]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 16 2019
  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#]]&]],{n,5}]

Formula

a(n) ~ c * d^n * n!, where d = 1.938593839617140963759657977... and c = 0.350862127201784401195038... - Vaclav Kotesovec, Feb 05 2022

Extensions

a(7)-a(20) from Alois P. Heinz, Sep 16 2019

A321723 Number of non-normal magic squares whose entries are all 0 or 1 and sum to n.

Original entry on oeis.org

1, 1, 0, 0, 9, 20, 96, 656, 5584, 48913, 494264, 5383552, 65103875, 840566080, 11834159652, 176621049784, 2838040416201, 48060623405312
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal magic square is a square matrix with row sums, column sums, and both diagonals all equal to d, for some d|n.

Examples

			The a(4) = 9 magic squares:
  [1 1]
  [1 1]
.
  [1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
  [0 0 1 0][0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0][0 1 0 0]
  [0 0 0 1][0 1 0 0][1 0 0 0][0 0 1 0][0 1 0 0][0 0 0 1][0 0 1 0][1 0 0 0]
  [0 1 0 0][0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0][0 0 1 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],SameQ@@Join[{Tr[prs2mat[#]],Tr[Reverse[prs2mat[#]]]},Total/@prs2mat[#],Total/@Transpose[prs2mat[#]]]]&]],{n,5}]

Formula

a(n) >= A007016(n) with equality if n is prime. - Chai Wah Wu, Jan 15 2019

Extensions

a(7)-a(15) from Chai Wah Wu, Jan 15 2019
a(16)-a(17) from Chai Wah Wu, Jan 16 2019

A321586 Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows (or distinct columns).

Original entry on oeis.org

1, 1, 4, 26, 204, 1992, 23336, 318080, 4948552, 86550424, 1681106080, 35904872576, 836339613984, 21100105791936, 573194015723840, 16681174764033728, 517768654898701120, 17074080118403865856, 596117945858272441408, 21967609729338776864384, 852095613819396775627200
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Examples

			The a(3) = 26 matrices:
  [3][21][12][111]
.
  [2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
  [1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
.
  [100][100][010][010][001][001]
  [010][001][100][001][100][010]
  [001][010][001][100][010][100]
		

Crossrefs

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 16 2019
  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#]]&]],{n,5}]

Extensions

a(7)-a(20) from Alois P. Heinz, Sep 16 2019

A321646 Number of distinct row/column permutations of Ferrers diagrams of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 15, 39, 108, 290, 781, 2050, 5434, 14210, 37150, 96347, 248250, 636278, 1620721, 4108340, 10361338, 26016060, 65019655, 161831393, 401090324, 990229108, 2435316984, 5967684036, 14572351628, 35464928382, 86033632280, 208062026930, 501676936146
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(4) = 15 diagrams:
  o o o o
.
  o o o   o o o   o o o   o o   o         o         o
  o         o         o   o o   o o o   o o o   o o o
.
  o o   o o   o     o       o     o
  o       o   o o   o     o o     o
  o       o   o     o o     o   o o
.
  o
  o
  o
  o
		

Crossrefs

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Sum[Length[Permutations[y]]*Length[Permutations[conj[y]]],{y,IntegerPartitions[n]}],{n,10}]

Formula

a(n) = Sum_{k = 1..A000041(n)} A008480(A215366(n,k)) * A008480(A122111(A215366(n,k))).

Extensions

a(11)-a(30) from Alois P. Heinz, Nov 15 2018

A321647 Number of distinct row/column permutations of the Ferrers diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 6, 1, 1, 6, 1, 9, 12, 10, 1, 8, 1, 12, 1, 12, 1, 36, 1, 1, 20, 14, 8, 12, 1, 16, 30, 12, 1, 72, 1, 15, 9, 18, 1, 10, 1, 9, 42, 18, 1, 8, 20, 16, 56, 20, 1, 72, 1, 22, 18, 1, 40, 120, 1, 21, 72, 72, 1, 20, 1, 24, 9, 24, 10, 180, 1, 15, 1, 26, 1, 144, 70, 28, 90, 20, 1, 72, 30, 27, 110, 30, 112, 12, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(10) = 6 permutations:
  o o   o o   o     o       o     o
  o       o   o o   o     o o     o
  o       o   o     o o     o   o o
The a(21) = 12 permutations:
  o o   o o   o o   o o   o o   o o   o     o     o       o     o     o
  o o   o o   o     o       o     o   o o   o o   o     o o   o o     o
  o       o   o o   o     o o     o   o o   o     o o   o o     o   o o
  o       o   o     o o     o   o o   o     o o   o o     o   o o   o o
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Permutations[primeMS[n]]]*Length[Permutations[conj[primeMS[n]]]],{n,50}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A321647(n) = (A008480(n) * A008480(A122111(n))); \\ Antti Karttunen, Feb 09 2019

Formula

a(n) = A008480(n) * A008480(A122111(n)) = A008480(n) * A321648(n).

Extensions

More terms from Antti Karttunen, Feb 09 2019

A321659 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, whose nonzero entries are all distinct.

Original entry on oeis.org

1, 1, 1, 9, 9, 17, 161, 169, 313, 465, 5313, 5465, 10457, 15313, 25009, 271929, 286329, 537953, 799121, 1297369, 1805161, 20532897, 21292017, 40508297, 59738825, 97431073, 135137569, 209525865, 2089381929, 2200470833, 4135252289, 6124698121, 9937836505
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(5) = 17 matrices:
  [5] [4 1] [3 2] [2 3] [1 4]
.
  [4] [4 0] [3] [3 0] [2] [2 0] [1] [1 0] [0 4] [0 3] [0 2] [0 1]
  [1] [0 1] [2] [0 2] [3] [0 3] [4] [0 4] [1 0] [2 0] [3 0] [4 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@DeleteCases[Join@@prs2mat[#],0]]&]],{n,5}]
  • PARI
    \\ here b(n) is A101370(n).
    b(n)={sum(m=0, n, sum(k=0, m, stirling(m,k,2)*k!)^2*polcoef(log(1+x+O(x*x^n))^m, n)/m!)}
    seq(n)={my(B=vector((sqrtint(8*(n+1))+1)\2, n, b(n-1))); apply(p->sum(i=0, poldegree(p), B[i+1]*i!*polcoef(p, i)), Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Nov 16 2018

Formula

a(n) = Sum_{k>=1} A101370(k)*k!*A008289(n,k) for n > 0. - Andrew Howroyd, Nov 17 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 16 2018

A007322 Number of functors of degree n from free Abelian groups to Abelian groups.

Original entry on oeis.org

1, 6, 39, 320, 3281, 40558, 586751, 9719616, 181353777, 3762893750, 85934344775, 2141853777856, 57852105131809, 1683237633305502, 52483648929669119, 1745835287515739328, 61712106494672572641, 2309989101145068446502, 91279147976756195994983
Offset: 1

Views

Author

Don Zagier (don.zagier(AT)mpim-bonn.mpg.de), Apr 11 1994

Keywords

References

  • H. J. Baues, Quadratic functors and metastable homotopy, Jnl. Pure and Applied Algebra, 91 (1994), 49-107.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

Formula

Binomial transform of A101370. - Vladeta Jovovic, Aug 17 2006
a(n) = (1/n!)*Sum_{k=1..n} (-1)^(n-k)*Stirling1(n+1,k+1)*A000670(k)^2. - Vladeta Jovovic, Aug 17 2006
G.f.: (1/(1-x))*Sum_{m>0,n>0} Sum_{j=1..n} (-1)^(n-j)*binomial(n,j)*((1-x)^(-j)-1)^m. - Vladeta Jovovic, Aug 17 2006
Partial sums of A120733. - Vladeta Jovovic, Aug 21 2006
a(n) ~ 2^(log(2)/2-2) * n! / (log(2))^(2*n+2). - Vaclav Kotesovec, May 03 2015

Extensions

More terms from Vladeta Jovovic, Aug 17 2006
Previous Showing 11-20 of 27 results. Next