A167139
G.f.: Sum_{n>=0} A005649(n)^2 * log(1+x)^n/n! where 1/(1-x)^2 = Sum_{n>=0} A005649(n)*log(1+x)^n/n!.
Original entry on oeis.org
1, 4, 30, 292, 3497, 49488, 806504, 14860032, 305261640, 6914828176, 171186477632, 4597513706496, 133116705145408, 4133143450593536, 136981118139314688, 4826352390162440704, 180139085757269111824
Offset: 0
G.f.: A(x) = 1 + 4*x + 30*x^2 + 292*x^3 + 3497*x^4 + 49488*x^5 + ...
Illustrate A(x) = Sum_{n>=0} A005649(n)^2 * log(1+x)^n/n!:
A(x) = 1 + 2^2*log(1+x) + 8^2*log(1+x)^2/2! + 44^2*log(1+x)^3/3! + 308^2*log(1+x)^4/4! + 2612^2*log(1+x)^5/5! + ... + A005649(n)^2*log(1+x)^n/n! + ...
where the g.f. of A005649 is 1/(2 - exp(x))^2:
1/(1-x)^2 = 1 + 2*log(1+x) + 8*log(1+x)^2/2! + 44*log(1+x)^3/3! + 308*log(1+x)^4/4! + 2612*log(1+x)^5/5! + ... + A005649(n)*log(1+x)^n/n! + ...
-
{A005649(n)=sum(k=0,n,(k+1)*stirling(n, k, 2)*k!)}
{a(n)=polcoef(sum(m=0,n,A005649(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
A365961
Number of (0,1)-matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums.
Original entry on oeis.org
1, 1, 4, 19, 127, 967, 9063, 94595, 1139708, 15118010, 223571836, 3597458356, 63233950081, 1197193320701, 24418765771835, 532015160784016, 12363381055074017, 304754656068754421, 7952728315095555279, 218848562411197549582, 6338152295627215890669, 192627799720153909693048
Offset: 0
The a(3) = 19 matrices:
[1 1 1]
.
[1 1] [1 1] [1 1 0] [1 0 1] [0 1 1]
[1 0] [0 1] [0 0 1] [0 1 0] [1 0 0]
.
[1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
[1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
[1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
[0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [1 0 0] [0 1 0] [1 0 0]
-
R(n,k)={Vec(-1 + 1/prod(j=1, k, 1 - binomial(k,j)*x^j + O(x*x^n)))}
seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023
Original entry on oeis.org
1, 1, 9, 169, 5625, 292681, 21930489, 2236627849, 297935847225, 50229268482121, 10454564139438969, 2632936466960600329, 789136169944454084025, 277579719258755165321161, 113238180214596650771616249, 53030348046942317338336489609, 28256184698070300360908567636025
Offset: 0
-
b:= proc(n, k) option remember;
`if`(n=0, 1, add(b(n-1, j)*j, j=k..k+1))
end:
a:= n-> b(n, 0)^2:
seq(a(n), n=0..16); # Alois P. Heinz, Aug 12 2025
-
Table[(PolyLog[ -z, 1/2]/2)^2, {z, 1, 16}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006 *)
-
{a(n)=sum(k=0, n, stirling(n, k, 2)*k!)^2} \\ Paul D. Hanna, Nov 07 2009
More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006
A321584
Number of connected (0,1)-matrices with n ones and no zero rows or columns.
Original entry on oeis.org
1, 1, 2, 6, 27, 159, 1154, 9968, 99861, 1138234, 14544650, 205927012, 3199714508, 54131864317, 990455375968, 19488387266842, 410328328297512, 9205128127109576, 219191041679766542, 5521387415218119528, 146689867860276432637, 4099255234885039058842, 120199458455807733040338
Offset: 0
The a(4) = 27 matrices:
[1111]
.
[111][111][111][11][110][110][101][101][100][011][011][010][001]
[100][010][001][11][101][011][110][011][111][110][101][111][111]
.
[11][11][11][11][10][10][10][10][01][01][01][01]
[10][10][01][01][11][11][10][01][11][11][10][01]
[10][01][10][01][10][01][11][11][10][01][11][11]
.
[1]
[1]
[1]
[1]
Cf.
A007716,
A007718,
A049311,
A056156,
A101370,
A104602,
A120733,
A283877,
A319557,
A319647,
A319616-
A319629,
A321585.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}] (* Mathematica 7.0+ *)
-
NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))}
ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R}
seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~)) ))))} \\ Andrew Howroyd, Jan 17 2024
A123114
a(n) = Sum_{r>0,s>0} binomial(r*s-1,n-1)/2^(r+s).
Original entry on oeis.org
1, 3, 13, 83, 701, 7363, 92541, 1354627, 22636861, 425241347, 8871085565, 203487078403, 5090418231549, 137920771272963, 4023549748488445, 125743894742698243, 4191213031967650813, 148414827031140706307
Offset: 1
-
Table[Sum[StirlingS1[n, k]*(Sum[(j - 1)!*StirlingS2[k, j], {j, 1, k}])^2, {k, 1, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)
Table[-(-1)^n + Sum[StirlingS1[n, k]*PolyLog[1-k, 2]^2, {k, 2, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)
A167141
G.f.: Sum_{n>=0} A004123(n)^2*log(1+x)^n/n! where 1/(1-2x) = Sum_{n>=0} A004123(n)*log(1+x)^n/n!.
Original entry on oeis.org
1, 4, 48, 864, 20880, 632448, 23018688, 978179328, 47529084096, 2598928566336, 157937795847936, 10559489876375040, 770269715428025088, 60876094422772800000, 5181654464327251948032, 472584847824904789910016
Offset: 0
G.f.: A(x) = 1 + 4*x + 48*x^2 + 864*x^3 + 20880*x^4 + 632448*x^5 +...
Illustrate A(x) = Sum_{n>=0} A004123(n)^2 * log(1+x)^n/n!:
A(x) = 1 + 2^2*log(1+x) + 10^2*log(1+x)^2/2! + 74^2*log(1+x)^3/3! + 730^2*log(1+x)^4/4! + 9002^2*log(1+x)^5/5! +...+ A004123(n)^2*log(1+x)^n/n! +...
where the e.g.f. of A004123 is 1/(3 - 2*exp(x)) and thus:
1/(1-2x) = 1 + 2*log(1+x) + 10*log(1+x)^2/2! + 74*log(1+x)^3/3! + 730*log(1+x)^4/4! + 9002*log(1+x)^5/5! +...+ A004123(n)*log(1+x)^n/n! +...
-
{A004123(n)=sum(k=0,n,2^k*stirling(n, k, 2)*k!)}
{a(n)=polcoeff(sum(m=0,n,A004123(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
A167532
G.f.: Sum_{n>=0} A155585(n)^2 * log(1/(1-2*x))^n/n!, where 1/(1-2*x+2*x^2) = Sum_{n>=0} A155585(n)*log(1/(1-2*x))^n/n!.
Original entry on oeis.org
1, 2, 2, 8, 20, 112, 432, 3200, 16704, 154688, 1017920, 11333888, 90011264, 1172330496, 10908526592, 162802835456, 1737036006400, 29235365490688, 351847501606912, 6593866787569664, 88364197074231296, 1825016315965767680
Offset: 0
G.f.: A(x) = 1 + 2*x + 2*x^2 + 8*x^3 + 20*x^4 + 112*x^5 + 432*x^6 +...
Illustrate A(x) = Sum_{n>=0} A155585(n)^2*log(1/(1-2*x))^n/n!:
A(x) = 1 - log(1-2*x) - 2^2*log(1-2*x)^3/3! - 16^2*log(1-2*x)^5/5! - 272^2*log(1-2*x)^7/7! - 7936^2*log(1-2*x)^9/9! +...+ A155585(n)^2*[ -log(1-2x)]^n/n! +...
where:
1/((1-x)^2 + x^2) = 1 - log(1-2*x) + 2*log(1-2*x)^3/3! - 16*log(1-2*x)^5/5! + 272*log(1-2*x)^7/7! - 7936*log(1-2*x)^9/9! +...+ A155585(n)*[ -log(1-2x)]^n/n! +...
-
{A155585(n)=if(n==0,1,bernfrac(n+1)*(2^(n+1)-1)*2^(n+1)/(n+1))}
{a(n)=polcoeff(sum(k=0,n,A155585(k)^2*log(1/(1-2*x +x*O(x^n)))^k/k!),n)}
Comments