cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A167139 G.f.: Sum_{n>=0} A005649(n)^2 * log(1+x)^n/n! where 1/(1-x)^2 = Sum_{n>=0} A005649(n)*log(1+x)^n/n!.

Original entry on oeis.org

1, 4, 30, 292, 3497, 49488, 806504, 14860032, 305261640, 6914828176, 171186477632, 4597513706496, 133116705145408, 4133143450593536, 136981118139314688, 4826352390162440704, 180139085757269111824
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2009

Keywords

Comments

Conjecture: For all integers m > 0, Sum_{n>=0} L(n)^m * log(1+x)^n/n! is an integer series whenever Sum_{n>=0} L(n)*log(1+x)^n/n! is an integer series.

Examples

			G.f.: A(x) = 1 + 4*x + 30*x^2 + 292*x^3 + 3497*x^4 + 49488*x^5 + ...
Illustrate A(x) = Sum_{n>=0} A005649(n)^2 * log(1+x)^n/n!:
A(x) = 1 + 2^2*log(1+x) + 8^2*log(1+x)^2/2! + 44^2*log(1+x)^3/3! + 308^2*log(1+x)^4/4! + 2612^2*log(1+x)^5/5! + ... + A005649(n)^2*log(1+x)^n/n! + ...
where the g.f. of A005649 is 1/(2 - exp(x))^2:
1/(1-x)^2 = 1 + 2*log(1+x) + 8*log(1+x)^2/2! + 44*log(1+x)^3/3! + 308*log(1+x)^4/4! + 2612*log(1+x)^5/5! + ... + A005649(n)*log(1+x)^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {A005649(n)=sum(k=0,n,(k+1)*stirling(n, k, 2)*k!)}
    {a(n)=polcoef(sum(m=0,n,A005649(m)^2*log(1+x+x*O(x^n))^m/m!),n)}

Formula

a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A005649(k)^2, cf. A101370. - Vladeta Jovovic, Nov 09 2009

A365961 Number of (0,1)-matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums.

Original entry on oeis.org

1, 1, 4, 19, 127, 967, 9063, 94595, 1139708, 15118010, 223571836, 3597458356, 63233950081, 1197193320701, 24418765771835, 532015160784016, 12363381055074017, 304754656068754421, 7952728315095555279, 218848562411197549582, 6338152295627215890669, 192627799720153909693048
Offset: 0

Views

Author

Ludovic Schwob, Sep 23 2023

Keywords

Comments

Let f(n) = number of ordered coprime factorizations of n (A325446(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.

Examples

			The a(3) = 19 matrices:
  [1 1 1]
.
  [1 1] [1 1] [1 1 0] [1 0 1] [0 1 1]
  [1 0] [0 1] [0 0 1] [0 1 0] [1 0 0]
.
  [1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
  [1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
  [1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
  [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • PARI
    R(n,k)={Vec(-1 + 1/prod(j=1, k, 1 - binomial(k,j)*x^j + O(x*x^n)))}
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 23 2023

A122725 a(n) = A000670(n)^2.

Original entry on oeis.org

1, 1, 9, 169, 5625, 292681, 21930489, 2236627849, 297935847225, 50229268482121, 10454564139438969, 2632936466960600329, 789136169944454084025, 277579719258755165321161, 113238180214596650771616249, 53030348046942317338336489609, 28256184698070300360908567636025
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2006

Keywords

Comments

This is also the number of possible positions of n intervals on a line having a common non-punctual intersection. Proof: Let us denoted each interval Ai (1 <= i <= n) by the string AiAi. Then the set of all such relative positions is given by the S-language [A1 ⊗ A2 ... ⊗ An]^2. The cardinality of $A1 ⊗ A2 ... ⊗ An$ is given by A000670. - Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 26 2007

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n=0, 1, add(b(n-1, j)*j, j=k..k+1))
        end:
    a:= n-> b(n, 0)^2:
    seq(a(n), n=0..16);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    Table[(PolyLog[ -z, 1/2]/2)^2, {z, 1, 16}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006 *)
  • PARI
    {a(n)=sum(k=0, n, stirling(n, k, 2)*k!)^2} \\ Paul D. Hanna, Nov 07 2009

Formula

a(n) = Sum_{m>=0} Sum_{k>=0} ((k*m)^n/2^(k+m+2)).
G.f.: Sum_{n>=0} (1/(2-exp(n*x))/2^(n+1)).
Sum_{n>=0} a(n)*log(1+x)^n/n! = o.g.f. of A101370. - Paul D. Hanna, Nov 07 2009
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, May 03 2015

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006

A321584 Number of connected (0,1)-matrices with n ones and no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 6, 27, 159, 1154, 9968, 99861, 1138234, 14544650, 205927012, 3199714508, 54131864317, 990455375968, 19488387266842, 410328328297512, 9205128127109576, 219191041679766542, 5521387415218119528, 146689867860276432637, 4099255234885039058842, 120199458455807733040338
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.

Examples

			The a(4) = 27 matrices:
  [1111]
.
  [111][111][111][11][110][110][101][101][100][011][011][010][001]
  [100][010][001][11][101][011][110][011][111][110][101][111][111]
.
  [11][11][11][11][10][10][10][10][01][01][01][01]
  [10][10][01][01][11][11][10][01][11][11][10][01]
  [10][01][10][01][10][01][11][11][10][01][11][11]
.
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}] (* Mathematica 7.0+ *)
  • PARI
    NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))}
    ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R}
    seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~)) ))))} \\ Andrew Howroyd, Jan 17 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 17 2024

A123114 a(n) = Sum_{r>0,s>0} binomial(r*s-1,n-1)/2^(r+s).

Original entry on oeis.org

1, 3, 13, 83, 701, 7363, 92541, 1354627, 22636861, 425241347, 8871085565, 203487078403, 5090418231549, 137920771272963, 4023549748488445, 125743894742698243, 4191213031967650813, 148414827031140706307
Offset: 1

Views

Author

Vladeta Jovovic, Sep 28 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, k]*(Sum[(j - 1)!*StirlingS2[k, j], {j, 1, k}])^2, {k, 1, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)
    Table[-(-1)^n + Sum[StirlingS1[n, k]*PolyLog[1-k, 2]^2, {k, 2, n}]/(n-1)!, {n, 1, 20}] (* Vaclav Kotesovec, Jun 07 2019 *)

Formula

a(n) = (1/(n-1)!)*Sum_{k=1..n} Stirling1(n,k)*b(k)^2, where b(n) = Sum_{k=1..n} (k-1)!*Stirling2(n,k).
a(n) ~ c * (n-1)! / (log(2))^(2*n), where c = 2^(-log(2)/2) = 0.7864497045594053649114085152934509198700275589579678941719548714254307448... - Vaclav Kotesovec, Jun 07 2019

A167141 G.f.: Sum_{n>=0} A004123(n)^2*log(1+x)^n/n! where 1/(1-2x) = Sum_{n>=0} A004123(n)*log(1+x)^n/n!.

Original entry on oeis.org

1, 4, 48, 864, 20880, 632448, 23018688, 978179328, 47529084096, 2598928566336, 157937795847936, 10559489876375040, 770269715428025088, 60876094422772800000, 5181654464327251948032, 472584847824904789910016
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2009

Keywords

Comments

CONJECTURE: For all integer m>0, Sum_{n>=0} L(n)^m * log(1+x)^n/n! is an integer series whenever Sum_{n>=0} L(n)*log(1+x)^n/n! is an integer series.
In this case, m=2 and L(n) = A004123(n), which is the number of generalized weak orders on n points.

Examples

			G.f.: A(x) = 1 + 4*x + 48*x^2 + 864*x^3 + 20880*x^4 + 632448*x^5 +...
Illustrate A(x) = Sum_{n>=0} A004123(n)^2 * log(1+x)^n/n!:
A(x) = 1 + 2^2*log(1+x) + 10^2*log(1+x)^2/2! + 74^2*log(1+x)^3/3! + 730^2*log(1+x)^4/4! + 9002^2*log(1+x)^5/5! +...+ A004123(n)^2*log(1+x)^n/n! +...
where the e.g.f. of A004123 is 1/(3 - 2*exp(x)) and thus:
1/(1-2x) = 1 + 2*log(1+x) + 10*log(1+x)^2/2! + 74*log(1+x)^3/3! + 730*log(1+x)^4/4! + 9002*log(1+x)^5/5! +...+ A004123(n)*log(1+x)^n/n! +...
		

Crossrefs

Cf. A004123, variants: A167139, A167138, A101370.

Programs

  • PARI
    {A004123(n)=sum(k=0,n,2^k*stirling(n, k, 2)*k!)}
    {a(n)=polcoeff(sum(m=0,n,A004123(m)^2*log(1+x+x*O(x^n))^m/m!),n)}

A167532 G.f.: Sum_{n>=0} A155585(n)^2 * log(1/(1-2*x))^n/n!, where 1/(1-2*x+2*x^2) = Sum_{n>=0} A155585(n)*log(1/(1-2*x))^n/n!.

Original entry on oeis.org

1, 2, 2, 8, 20, 112, 432, 3200, 16704, 154688, 1017920, 11333888, 90011264, 1172330496, 10908526592, 162802835456, 1737036006400, 29235365490688, 351847501606912, 6593866787569664, 88364197074231296, 1825016315965767680
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2009

Keywords

Comments

Note that A155585(n) = 2^n E_{n}(1) where E_{n}(x) are the Euler polynomials; e.g.f. of A155585 is exp(x)/cosh(x).
CONJECTURE: For all integer m>0, Sum_{n>=0} L(n)^m * log(1+x)^n/n! is an integer series whenever Sum_{n>=0} L(n)*log(1+x)^n/n! is an integer series.

Examples

			G.f.: A(x) = 1 + 2*x + 2*x^2 + 8*x^3 + 20*x^4 + 112*x^5 + 432*x^6 +...
Illustrate A(x) = Sum_{n>=0} A155585(n)^2*log(1/(1-2*x))^n/n!:
A(x) = 1 - log(1-2*x) - 2^2*log(1-2*x)^3/3! - 16^2*log(1-2*x)^5/5! - 272^2*log(1-2*x)^7/7! - 7936^2*log(1-2*x)^9/9! +...+ A155585(n)^2*[ -log(1-2x)]^n/n! +...
where:
1/((1-x)^2 + x^2) = 1 - log(1-2*x) + 2*log(1-2*x)^3/3! - 16*log(1-2*x)^5/5! + 272*log(1-2*x)^7/7! - 7936*log(1-2*x)^9/9! +...+ A155585(n)*[ -log(1-2x)]^n/n! +...
		

Crossrefs

Programs

  • PARI
    {A155585(n)=if(n==0,1,bernfrac(n+1)*(2^(n+1)-1)*2^(n+1)/(n+1))}
    {a(n)=polcoeff(sum(k=0,n,A155585(k)^2*log(1/(1-2*x +x*O(x^n)))^k/k!),n)}
Previous Showing 21-27 of 27 results.