cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A238583 Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X 9 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=4, 0<=k<=2*floor(n/4), read by rows.

Original entry on oeis.org

1, 3, 2, 1, 3, 4, 1, 6, 9, 1, 6, 14, 1, 9, 32, 18, 4, 1, 9, 55, 65, 23, 1, 12, 91, 164, 87, 1, 12, 132, 320, 229, 1, 15, 186, 608, 648, 134, 10, 1, 15, 245, 1043, 1633, 770, 106, 1, 18, 317, 1736, 3659, 2800, 646, 1, 18, 394, 2666, 7247, 7572, 2510
Offset: 4

Views

Author

Keywords

Examples

			The first 8 rows of T(n,k) are:
.\ k    0      1      2      3      4
n
4       1      3      2
5       1      3      4
6       1      6      9
7       1      6     14
8       1      9     32     18      4
9       1      9     55     65     23
10      1     12     91    164     87
11      1     12    132    320    229
		

Crossrefs

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(26) and beyond from Andrew Howroyd, May 29 2017

A238586 Number T(n,k) of equivalence classes of ways of placing k 2 X 2 tiles in an n X 10 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=2, 0<=k<=5*floor(n/2), read by rows.

Original entry on oeis.org

1, 5, 16, 19, 9, 1, 1, 5, 32, 73, 66, 10, 1, 10, 85, 377, 961, 1348, 1080, 472, 111, 12, 1, 1, 10, 142, 1011, 4429, 11370, 17252, 14478, 6094, 1020, 70, 1, 15, 236, 2280, 14203, 56571, 146212, 244063, 261847, 179063, 77974, 21422, 3637, 368, 24, 1
Offset: 2

Views

Author

Keywords

Examples

			The first 4 rows of T(n,k) are:
.\k  0     1     2     3     4     5     6     7     8     9    10
n
2    1     5    16    19     9     1
3    1     5    32    73    66    10
4    1    10    85   377   961  1348  1080   472   111    12     1
5    1    10   142  1011  4429 11370 17252 14478  6094  1020    70
		

Crossrefs

Extensions

Terms corrected and crossrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(36) and beyond from Andrew Howroyd, May 29 2017

A238592 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 10 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=3*floor(n/3), read by rows.

Original entry on oeis.org

1, 4, 9, 2, 1, 4, 18, 8, 1, 8, 42, 28, 1, 8, 77, 165, 151, 44, 6, 1, 12, 133, 521, 891, 543, 106, 1, 12, 200, 1160, 3022, 2756, 824, 1, 16, 288, 2260, 8443, 13336, 9364, 2819, 387, 20, 1, 16, 387, 3867, 19833, 48418, 58731, 34797, 9462, 900
Offset: 3

Views

Author

Keywords

Examples

			The first 6 rows of T(n,k) are:
.\ k    0      1      2      3      4      5      6
n
3       1      4      9      2
4       1      4     18      8
5       1      8     42     28
6       1      8     77    165    151     44      6
7       1     12    133    521    891    543    106
8       1     12    200   1160   3022   2756    824
		

Crossrefs

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(36) and beyond from Andrew Howroyd, May 29 2017

A128099 Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045).
Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - Bob Selcoe, Jul 06 2013
From Johannes W. Meijer, Aug 28 2013: (Start)
The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End)
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - Zagros Lalo, Jul 31 2018
It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - Michel Marcus, Jun 15 2019

Examples

			Triangle starts:
  1;
  1;
  1,  2;
  1,  4;
  1,  6,  4;
  1,  8, 12;
  1, 10, 24,  8;
  1, 12, 40, 32;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358

Crossrefs

Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909.
Cf. (Similar triangles) A008315, A011973, A102541.

Programs

  • Maple
    T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
  • Mathematica
    Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten  (* G. C. Greubel, Dec 28 2016 *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k).
G.f.: 1/(1-z-2*t*z^2).
Sum_{k=0..floor(n/2)} k*T(n,k) = A095977(n-1).
From Johannes W. Meijer, Aug 28 2013: (Start)
T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2).
T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End)

A238558 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 8 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=2*floor(n/3), read by rows.

Original entry on oeis.org

1, 3, 4, 1, 3, 8, 1, 6, 18, 1, 6, 36, 32, 13, 1, 9, 64, 128, 87, 1, 9, 100, 308, 332, 1, 12, 146, 647, 1118, 451, 68, 1, 12, 200, 1160, 3022, 2756, 824, 1, 15, 264, 1958, 6882, 10076, 5009, 1, 15, 336, 3020, 13798, 28774, 24237, 4774, 346
Offset: 3

Views

Author

Keywords

Examples

			The first 8 rows of T(n,k) are:
.\ k    0      1      2      3      4      5      6
n
3       1      3      4
4       1      3      8
5       1      6     18
6       1      6     36     32     13
7       1      9     64    128     87
8       1      9    100    308    332
9       1     12    146    647   1118    451     68
10      1     12    200   1160   3022   2756    824
		

Crossrefs

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(41) and beyond from Andrew Howroyd, May 29 2017

A238582 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 9 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=2*floor(n/3), read by rows.

Original entry on oeis.org

1, 4, 6, 1, 1, 4, 12, 3, 1, 8, 28, 10, 1, 8, 54, 82, 49, 8, 1, 1, 12, 95, 283, 311, 91, 10, 1, 12, 146, 647, 1118, 451, 68, 1, 16, 212, 1300, 3380, 3076, 1200, 209, 20, 1, 1, 16, 288, 2260, 8443, 13336, 9364, 2819, 387, 20
Offset: 3

Views

Author

Keywords

Examples

			The first 9 rows of T(n,k) are:
.\ k  0     1     2     3     4     5     6     7     8     9
n
3     1     4     6     1
4     1     4    12     3
5     1     8    28    10
6     1     8    54    82    49     8     1
7     1    12    95   283   311    91    10
8     1    12   146   647  1118   451    68
9     1    16   212  1300  3380  3076  1200   209    20     1
10    1    16   288  2260  8443 13336  9364  2819   387    20
11    1    20   379  3709 18203 42412 44599 19051  3682   282
		

Crossrefs

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(46) and beyond from Andrew Howroyd, May 29 2017

A238551 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 6 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=2*floor(n/3), read by rows.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 1, 4, 4, 1, 4, 11, 3, 1, 1, 6, 21, 13, 4, 1, 6, 36, 32, 13, 1, 8, 54, 82, 49, 8, 1, 1, 8, 77, 165, 151, 44, 6, 1, 10, 103, 319, 382, 173, 31, 1, 10, 134, 530, 867, 559, 164, 12, 1, 1, 12, 168, 852, 1789, 1632, 705, 119, 9
Offset: 3

Views

Author

Keywords

Examples

			The first 12 rows of T(n,k) are:
.\ k  0     1     2     3     4     5     6     7     8
n
3     1     2     1
4     1     2     2
5     1     4     4
6     1     4    11     3     1
7     1     6    21    13     4
8     1     6    36    32    13
9     1     8    54    82    49     8     1
10    1     8    77   165   151    44     6
11    1    10   103   319   382   173    31
12    1    10   134   530   867   559   164    12     1
13    1    12   168   852  1789  1632   705   119     9
14    1    12   207  1255  3409  4074  2406   618    66
		

Crossrefs

Extensions

Terms corrected and xrefs updated by Christopher Hunt Gribble, Apr 27 2015
Terms a(57) and beyond from Andrew Howroyd, May 29 2017

A192928 The Gi1 and Gi2 sums of Losanitsch's triangle A034851.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 16, 20, 29, 37, 53, 69, 98, 130, 183, 245, 343, 463, 646, 877, 1220, 1664, 2310, 3161, 4381, 6009, 8319, 11430, 15811, 21751, 30070, 41405, 57216, 78836, 108906, 150130, 207346
Offset: 0

Views

Author

Johannes W. Meijer, Jul 14 2011

Keywords

Comments

The Gi1 and Gi2 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal this sequence.
From Johannes W. Meijer, Aug 26 2013: (Start)
The a(n) are also the Ca1 and Ca2 sums of McGarvey’s triangle A102541.
Furthermore they are the Kn11 and Kn12 sums of triangle A228570.
And finally the terms of this sequence are the row sums of triangle A228572. (End)

Crossrefs

Programs

  • Maple
    A192928 := proc(n): (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 end: A003269 := proc(n): sum(binomial(n-1-3*j, j), j=0..(n-1)/3) end: x:=proc(n): if type(n,even) then A003269(n/2+1) else 0 fi: end: seq(A192928(n),n=0..42);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, 0, -1, 0, 1, -1, 0, 0, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11}, 43] (* Jean-François Alcover, Nov 16 2017 *)

Formula

G.f.: (-1/2)*(1/(x^4+x-1) + (1+x+x^4)/(x^8+x^2-1))= -(1+x)*(x^7-x^6+x^5+x-1) / ( (x^4+x-1)*(x^8+x^2-1) ).
a(n) = (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 with x(2*n) = A003269(n+1) and x(2*n+1) = 0.
From Johannes W. Meijer, Aug 26 2013: (Start)
a(n) = sum(A228572(n, k), k=0..n)
a(n) = sum(A228570(n-k, k), k=0..floor(n/2))
a(n) = sum(A102541(n-2*k, k), k=0..floor(n/3))
a(n) = sum(A034851(n-3*k, k), k=0..floor(n/4)) (End)

A173284 Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 2, 1, 8, 3, 1, 13, 5, 2, 21, 8, 3, 1, 34, 13, 5, 2, 1, 55, 21, 8, 3, 1, 89, 34, 13, 5, 2, 1, 144, 55, 21, 8, 3, 1, 233, 89, 34, 13, 5, 2, 1, 377, 144, 55, 21, 8, 3, 1, 610, 233, 89, 34, 13, 5, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 14 2010

Keywords

Comments

The row sums equal A052952.
Let the triangle = M. Then lim_{n->infinity} M^n = A173285 as a left-shifted vector.
A173284 * [1, 2, 3, ...] = A054451: (1, 1, 4, 5, 12, 17, 33, ...). - Gary W. Adamson, Mar 03 2010
From Johannes W. Meijer, Sep 05 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A104762.
The diagonal sums lead to A004695. (End)

Examples

			First few rows of the triangle:
    1;
    1;
    2,   1;
    3,   1;
    5,   2,  1;
    8,   3,  1;
   13,   5,  2,  1;
   21,   8,  3,  1;
   34,  13,  5,  2,  1;
   55,  21,  8,  3,  1;
   89,  34, 13,  5,  2, 1;
  144,  55, 21,  8,  3, 1;
  233,  89, 34, 13,  5, 2, 1;
  377, 144, 55, 21,  8, 3, 1;
  610, 233, 89, 34, 13, 5, 2, 1;
  ...
		

Crossrefs

Cf. (Similar triangles) A008315 (Catalan), A011973 (Pascal), A102541 (Losanitsch), A122196 (Fractal), A122197 (Fractal), A128099 (Pell-Jacobsthal), A152198, A152204, A207538, A209634.

Programs

  • Maple
    T := proc(n, k): if n<0 then return(0) elif k < 0 or k > floor(n/2) then return(0) else combinat[fibonacci](n-2*k+1) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..14); # Johannes W. Meijer, Sep 05 2013

Formula

Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
From Johannes W. Meijer, Sep 05 2013: (Start)
T(n,k) = A000045(n-2*k+1), n >= 0 and 0 <= k <= floor(n/2).
T(n,k) = A104762(n-k, k). (End)

Extensions

Term a(15) corrected by Johannes W. Meijer, Sep 05 2013

A068930 Number of incongruent ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

4, 2, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 26, 37, 45, 63, 78, 108, 136, 186, 237, 322, 414, 559, 724, 973, 1267, 1697, 2219, 2964, 3888, 5183, 6815, 9071, 11949, 15886, 20955, 27835, 36755, 48790, 64476, 85545, 113115, 150021, 198460, 263136
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068924 for total number of tilings, A068926 for more info.
Cf. A005683.

Programs

  • Mathematica
    Join[{4,2},LinearRecurrence[{0,1,1,1,0,0,-1,-1,-1},{1,1,1,2,2,3,3,5,5},50]] (* Harvey P. Dale, Nov 21 2014 *)

Formula

For n >= 12, a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-7) - a(n-8) - a(n-9).
G.f.: x*(4+x^10+5*x^9+4*x^8+3*x^7-x^6-2*x^5-6*x^4-5*x^3 -3*x^2+2*x) / ((x^3+x^2-1)*(x^6+x^4-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = sum(A102541(n-k-2, n-2*k-4), k=0..floor((n-4)/2)), n >= 4. - Johannes W. Meijer, Aug 24 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
Previous Showing 21-30 of 35 results. Next