cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A305492 a(n) = ((1 + y)^n - (1 - y)^n)/y with y = sqrt(8).

Original entry on oeis.org

0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, 915814, 3504600, 13419898, 51371996, 196683278, 752970528, 2882724002, 11036241700, 42251551414, 161756794728, 619274449354, 2370846461804, 9076614069086, 34749153370800
Offset: 0

Views

Author

Peter Luschny, Jun 02 2018

Keywords

Examples

			Array ((1+y)^n - (1-y)^n)/y with y = sqrt(k).
[k\n]
[1]   1, 2, 4,  8, 16, 32,   64,  128,    256,   512,   1024, ...
[2]   0, 2, 4, 10, 24, 58,  140,  338,    816,  1970,   4756, ...
[3]   0, 2, 4, 12, 32, 88,  240,  656,   1792,  4896,  13376, ...
[4]   0, 2, 4, 14, 40, 122, 364,  1094,  3280,  9842,  29524, ...
[5]   0, 2, 4, 16, 48, 160, 512,  1664,  5376, 17408,  56320, ...
[6]   0, 2, 4, 18, 56, 202, 684,  2378,  8176, 28242,  97364, ...
[7]   0, 2, 4, 20, 64, 248, 880,  3248, 11776, 43040, 156736, ...
[8]   0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, ...
[9]   0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, ...
		

Crossrefs

Let f(n, y) = ((1 + y)^n - (1 - y)^n)/y.
f(n, 1 ) = A000079(n);
f(n, sqrt(2)) = A163271(n+1);
f(n, sqrt(3)) = A028860(n+2);
f(n, 2 ) = A152011(n) for n>0;
f(n, sqrt(5)) = A103435(n);
f(n, sqrt(6)) = A083694(n);
f(n, sqrt(7)) = A274520(n);
f(n, sqrt(8)) = a(n);
f(n, 3 ) = A192382(n+1);
Cf. A305491.
Equals 2 * A015519.

Programs

  • Maple
    egf :=  (n,x) -> 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n):
    ser := series(egf(8,x), x, 26):
    seq(n!*coeff(ser,x, n), n=0..24);
  • Mathematica
    Table[Simplify[((1 + Sqrt[8])^n - (1 - Sqrt[8])^n)/ Sqrt[8]], {n, 0, 24}]
  • PARI
    concat(0, Vec(2*x / (1 - 2*x - 7*x^2) + O(x^40))) \\ Colin Barker, Jun 05 2018

Formula

E.g.f.: 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n) for n = 8.
From Colin Barker, Jun 02 2018: (Start)
G.f.: 2*x / (1 - 2*x - 7*x^2).
a(n) = 2*a(n-1) + 7*a(n-2) for n>1.
(End)

A171648 a(1) = 1, a(n) = 2*a(n-1) if n is even; a(n) = a(n-1)*Fibonacci((n+1)/2)/Fibonacci((n-1)/2) if n is odd.

Original entry on oeis.org

1, 2, 2, 4, 8, 16, 24, 48, 80, 160, 256, 512, 832, 1664, 2688, 5376, 8704, 17408, 28160, 56320, 91136, 182272, 294912, 589824, 954368, 1908736, 3088384, 6176768, 9994240, 19988480, 32342016, 64684032, 104660992, 209321984, 338690048, 677380096, 1096024064
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

a(n)/a(n-1) apparently tends to phi = A001622 if n=odd; e.g. a(21)/a(20) = 91136/56320 = 1.61818...
a(n)/a(n-2) apparently tends to 1+sqrt(5) = 3.236...= A134945; where a(21)/a(19) = 91136/28160 = 3.23636...
a(1)=1, a(2)=2, a(3)=2, for n>3 a(n)=2*a(n-1) if n is even and a(n)=2*(a(n-1)-a(n-2)+a(n-3)) if n is odd. - Vincenzo Librandi, Dec 06 2010

Examples

			a(8) = 48 = 2*a(7) = 2*24. a(9) = 80 = (5/3)*48 since Fibonacci(5) = 5 and Fibonacci(4) = 3.
		

Crossrefs

Cf. A063727 (bisection), A103435 (bisection).

Programs

  • PARI
    Vec(x*(1+2*x)/(1-2*x^2-4*x^4) + O(x^50)) \\ Colin Barker, Aug 02 2016

Formula

a(1) = 1, a(n) = 2*a(n-1) if n is even; a(n) = a(n-1)*A000045((n+1)/2)/A000045((n-1)/2) if n is odd.
From Colin Barker, Aug 02 2016: (Start)
a(n) = 2*a(n-2) + 4*a(n-4) for n>4.
G.f.: x*(1+2*x) / (1-2*x^2-4*x^4).
(End)

Extensions

Defined "F", removed abundant parentheses, added punctuation to examples, added a factor to the definition, corrected a(13) and added more terms - R. J. Mathar, Dec 15 2009

A261397 a(n) = 3^n*Fibonacci(n).

Original entry on oeis.org

0, 3, 9, 54, 243, 1215, 5832, 28431, 137781, 669222, 3247695, 15766083, 76527504, 371477259, 1803179313, 8752833270, 42487113627, 206236840311, 1001094543576, 4859415193527, 23588096472765, 114499026160038, 555789946734999, 2697861075645339, 13095692747551008, 63567827923461075
Offset: 0

Views

Author

N. J. A. Sloane, Aug 18 2015

Keywords

Crossrefs

Programs

  • Magma
    [3^n*Fibonacci(n): n in [0..30]]; // Vincenzo Librandi, Aug 21 2015
  • Mathematica
    RecurrenceTable[{a[0]== 0, a[1]== 3, a[n]== 3*a[n-1]  + 9*a[n-2]}, a, {n,50}] (* G. C. Greubel, Aug 21 2015 *)
    LinearRecurrence[{3, 9}, {0, 3}, 30] (* Vincenzo Librandi, Aug 21 2015 *)
  • PARI
    vector(30, n, n--; 3^n*fibonacci(n)) \\ Michel Marcus, Aug 21 2015
    
  • PARI
    concat(0, Vec(-3*x/(9*x^2+3*x-1) + O(x^30))) \\ Colin Barker, Sep 01 2015
    

Formula

a(n) = 3*a(n-1) + 9*a(n-2), a(0)=0, a(1)=3. - G. C. Greubel, Aug 21 2015
G.f.: 3*x / (1 - 3*x - 9*x^2). - G. C. Greubel, Aug 21 2015
E.g.f.: (1/(phi - 1/phi))*(e^(3*phi*x) - e^(3*x/phi)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 21 2015

A277091 a(n) = ((1 + sqrt(15))^n - (1 - sqrt(15))^n)/sqrt(15).

Original entry on oeis.org

0, 2, 4, 36, 128, 760, 3312, 17264, 80896, 403488, 1939520, 9527872, 46209024, 225808256, 1098542848, 5358401280, 26096402432, 127210422784, 619770479616, 3020486878208, 14717760471040, 71722337236992, 349493321068544, 1703099363454976, 8299105221869568, 40441601532108800
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 1111111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 1001111111111111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 14}, {0, 2}, 26]
  • PARI
    concat(0, Vec(2*x/(1-2*x-14*x^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 14*x^2).
E.g.f.: 2*sinh(sqrt(15)*x)*exp(x)/sqrt(15).
a(n) = 2*a(n-1) + 14*a(n-2).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(15) = 1 + A010472.

A152036 Triangular product sequence based 2^n times the Fibonacci version and 4 replaced with m: t(m,n)=2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}].

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 14, 1, 2, 4, 16, 48, 1, 2, 4, 18, 56, 202, 1, 2, 4, 20, 64, 248, 880, 1, 2, 4, 22, 72, 298, 1100, 4286, 1, 2, 4, 24, 80, 352, 1344, 5504, 21760, 1, 2, 4, 26, 88, 410, 1612, 6914, 28336, 118898, 1, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 20 2008

Keywords

Comments

The row sums are: {1, 3, 7, 21, 71, 283, 1219, 5785, 29071, 156291, 880507,...}. A sequence of sequences with the row numbers m instead of n: and the ratio increases with each row: at (1+Sqrt[5]) for m=4.

Examples

			1;
1, 2;
1, 2, 4;
1, 2, 4, 14;
1, 2, 4, 16, 48;
1, 2, 4, 18, 56, 202;
1, 2, 4, 20, 64, 248, 880;
1, 2, 4, 22, 72, 298, 1100, 4286;
1, 2, 4, 24, 80, 352, 1344, 5504, 21760;
1, 2, 4, 26, 88, 410, 1612, 6914, 28336, 118898;
1, 2, 4, 28, 96, 472, 1904, 8528, 36096, 157472, 675904;
		

Crossrefs

Cf. A103435 (row 4), A083694 (row 5)

Programs

  • Mathematica
    f[n_, m_] = 2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[Table[FullSimplify[ExpandAll[f[n, m]]], {n, 0, m}], {m, 0, 10}]

Formula

t(m,n)=2^n*Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}].
Previous Showing 21-25 of 25 results.