cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 61 results. Next

A139347 Decimal expansion of negated tangent of the golden ratio. That is, the decimal expansion of -tan((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 5, 3, 8, 0, 0, 7, 8, 2, 4, 9, 3, 2, 7, 4, 6, 4, 8, 5, 8, 6, 2, 8, 1, 1, 7, 0, 3, 2, 5, 8, 2, 5, 5, 9, 7, 8, 8, 1, 2, 4, 3, 6, 7, 4, 6, 4, 8, 2, 6, 0, 8, 6, 3, 7, 0, 7, 5, 6, 8, 9, 4, 5, 9, 9, 4, 5, 9, 8, 7, 2, 7, 5, 9, 3, 2, 8, 2, 0, 2, 6, 8, 0, 0, 3, 5, 4, 7, 7, 5, 6, 0, 6, 9, 6, 3, 4, 2, 5, 8, 1, 4, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-21.15380078249327464858628117032582559788124367464826...
		

Crossrefs

Programs

Formula

Equals tan(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139348.
Equals A139345/A139346. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign added to definition by R. J. Mathar, Feb 05 2009

A139348 Decimal expansion of negated cotangent of the golden ratio. That is, the decimal expansion of -cot((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 7, 2, 8, 2, 8, 6, 6, 4, 7, 9, 4, 4, 8, 1, 1, 8, 9, 3, 5, 6, 5, 0, 9, 6, 0, 6, 2, 1, 6, 3, 3, 4, 2, 0, 0, 5, 6, 1, 0, 5, 7, 2, 2, 5, 5, 6, 5, 3, 3, 0, 9, 7, 7, 2, 9, 9, 2, 5, 3, 2, 4, 7, 9, 8, 7, 7, 2, 2, 1, 4, 5, 2, 5, 6, 8, 8, 1, 6, 8, 7, 9, 8, 8, 7, 5, 0, 5, 2, 9, 9, 3, 8, 8, 0, 7, 0, 2, 1, 5, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.04727282866479448118935650960621633420056105722556...
		

Crossrefs

Programs

Formula

Equals cot(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139347.
Equals A139346/A139345. (End)

Extensions

Added sign in definition. Leading zero dropped by R. J. Mathar, Feb 05 2009

A219010 Numerators in a product expansion for sqrt(5).

Original entry on oeis.org

3, 123, 28143753123, 17656721319717734662791328845675730903632844218828123
Offset: 0

Views

Author

Peter Bala, Nov 09 2012

Keywords

Comments

a(4) has 262 digits.
Iterating the algebraic identity sqrt(1 + 4/x) = (1 + 2*(x + 2)/(x^2 + 3*x + 1)) * sqrt(1 + 4/(x*(x^2 + 5*x + 5)^2)) produces the rapidly converging product expansion sqrt(1 + 4/x) = Product_{n >= 0} (1 + 2*a(n)/b(n)), where a(n) and b(n) are integer sequences when x is an integer: a(n) satisfies the recurrence a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with the initial condition a(0) = x + 2 and b(n) satisfies the recurrence b(n+1) = 5/2*(b(n)^4 - b(n)^2)*sqrt(4*b(n) + 5) + b(n)^5 + 15/2*b(n)^4 - 25/2*b(n)^2 + 5 with the initial condition b(0) = x^2 + 3*x + 1.
The present case is when x = 1. The denominators b(n) are in A219011. See also A219012 (x = 2) and A219014 (x = 4).
For another product expansion for sqrt(5) see A002814.

Examples

			The first three terms of the product give 51 correct decimal places of sqrt(5): (1 + 2*3/5)*(1 + 2*123/15005)*(1 + 2*28143753123/792070839820228500005) = 2.23606 79774 99789 69640 91736 68731 27623 54406 18359 61152 5(4...).
		

Crossrefs

Programs

  • Mathematica
    Table[(1 + 5*(Fibonacci[5^n] Fibonacci[5^n + 1] + Fibonacci[5^n - 1]^2))/2, {n, 0, 3}] (* or *)
    Table[LucasL[2*5^n], {n, 0, 3}] (* Michael De Vlieger, Jul 30 2017 *)
  • Maxima
    A219010(n):=1/2*(1 + 5*(fib(5^n)*fib(5^n+1)+(fib(5^n - 1))^2))$
    makelist(A219010(n),n,0,3); /* Martin Ettl, Nov 12 2012 */

Formula

Let tau = (3 + sqrt(5))/2. Then a(n) = tau^(5^n) + 1/tau^(5^n).
a(n) = (1/2)*(1 + 5*(Fibonacci(5^n)*Fibonacci(5^n + 1) + (Fibonacci(5^n - 1))^2)).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 3.
a(n) = Lucas(2*5^n). - Ehren Metcalfe, Jul 29 2017

A283968 a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 15, 19, 23, 27, 32, 37, 42, 48, 54, 61, 68, 75, 83, 91, 100, 109, 118, 128, 138, 148, 159, 170, 182, 194, 206, 219, 232, 245, 259, 273, 288, 303, 318, 334, 350, 367, 384, 401, 419, 437, 455, 474, 493, 513, 533, 553, 574, 595, 617, 639
Offset: 0

Views

Author

Clark Kimberling, Mar 18 2017

Keywords

Comments

This is row 1 of the transposable interspersion A283938.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio^2; z = 120;
    s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r];
    Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968 *)
    Table[s[n], {n, 0, z}] (* A283969 *)
  • PARI
    r = (3 + sqrt(5))/2;
    a(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
    for(n=0, 30, print1(a(n),", ")) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import sqrt
    import math
    def a(n):
        return n + 1 + sum([int(math.floor((n - k)/r)) for k in range(n + 1)])
    print([a(n) for n in range(61)]) # Indranil Ghosh, Mar 19 2017

Formula

a(n) = a(n-1) + 1 + floor(n*(3 + sqrt(5))/2), a(0) = 1.

A283969 a(n) = n + 1 + Sum_{k=0..n} floor((n-k)/r), where r = (3+sqrt(5))/2.

Original entry on oeis.org

1, 4, 10, 18, 29, 43, 59, 78, 99, 123, 150, 179, 211, 246, 283, 323, 365, 410, 458, 508, 561, 616, 674, 735, 798, 864, 933, 1004, 1078, 1154, 1233, 1315, 1399, 1486, 1576, 1668, 1763, 1860, 1960, 2063, 2168, 2276, 2386, 2499, 2615, 2733, 2854, 2978, 3104
Offset: 0

Views

Author

Clark Kimberling, Mar 18 2017

Keywords

Comments

This is column 1 of the transposable interspersion A283938.

Crossrefs

Partial sums of A026352.

Programs

  • Mathematica
    r = GoldenRatio^2; z = 120;
    s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r];
    Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968 *)
    Table[s[n], {n, 0, z}] (* A283969 *)
  • PARI
    a(n) = if(n<1, 1, a(n - 1) + 1 + floor(n*(3 + sqrt(5))/2));
    for(n = 0, 50, print1(a(n),", ")) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    import math
    from sympy import sqrt
    def a(n):
        return 1 if n<1 else a(n - 1) + 1 + int(math.floor(n*(3 + sqrt(5))/2))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Mar 19 2017

Formula

a(n) = n + 1 + Sum_{k=0..n} floor((n-k)/r), where r = (3+sqrt(5))/2.

A139349 Decimal expansion of negated secant of the golden ratio. That is, the decimal expansion of -sec((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 7, 7, 4, 2, 4, 0, 0, 6, 3, 6, 6, 1, 4, 4, 4, 0, 8, 7, 2, 8, 0, 4, 0, 4, 0, 9, 3, 7, 1, 3, 0, 2, 1, 3, 3, 0, 7, 1, 8, 5, 3, 5, 5, 3, 6, 4, 1, 7, 4, 0, 6, 1, 7, 5, 4, 3, 5, 6, 5, 6, 6, 7, 8, 9, 4, 6, 1, 6, 1, 8, 5, 2, 9, 6, 3, 3, 7, 1, 6, 9, 2, 4, 2, 6, 8, 3, 7, 9, 4, 9, 2, 4, 6, 5, 3, 3, 1, 8, 7, 3, 3, 6
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			21.17742400636614440872804040937130213307185355364174...
		

Crossrefs

Programs

Formula

Equals sec(A001622).
Equals 1/A139346. - Amiram Eldar, Feb 07 2022

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign in definition added by R. J. Mathar, Feb 05 2009

A139350 Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 7, 3, 6, 6, 1, 4, 6, 5, 2, 2, 5, 4, 8, 9, 6, 1, 6, 7, 1, 1, 3, 5, 1, 7, 0, 5, 5, 8, 7, 7, 9, 4, 4, 6, 1, 5, 3, 1, 8, 0, 6, 6, 2, 4, 2, 8, 2, 0, 2, 8, 2, 4, 0, 4, 9, 7, 6, 6, 5, 7, 8, 8, 2, 6, 9, 7, 8, 7, 7, 5, 5, 0, 9, 6, 1, 7, 2, 9, 4, 7, 0, 3, 9, 9, 5, 8, 1, 1, 1, 3, 6, 1, 9, 2, 6, 8, 8, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.00111673661465225489616711351705587794461531806624...
		

Crossrefs

Programs

Formula

Equals 1/A139345. - Amiram Eldar, Feb 07 2022

Extensions

Edited by Bruno Berselli, Feb 19 2013

A140232 a(n) = ceiling(n*exp((1+sqrt(5))/2)).

Original entry on oeis.org

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 1

Views

Author

Mohammad K. Azarian, May 13 2008

Keywords

Crossrefs

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Ceiling(n*Exp(phi)): n in [1..60]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    Ceiling[Exp[GoldenRatio]*Range[60]] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    phi=(1+sqrt(5))/2; vector(60, n, ceil(n*exp(phi)) ) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [ceil(n*exp(golden_ratio)) for n in (1..60)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = ceiling(n*A139341). - R. J. Mathar, Feb 06 2009

A184795 Numbers m such that prime(m) is of the form floor(k*s), where s=(3+sqrt(5))/2; complement of A184793.

Original entry on oeis.org

1, 3, 4, 6, 9, 11, 13, 15, 21, 23, 24, 28, 29, 35, 36, 37, 39, 43, 44, 49, 51, 54, 57, 59, 62, 64, 68, 71, 75, 78, 82, 83, 85, 90, 92, 99, 100, 101, 102, 109, 111, 113, 116, 120, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 136, 141, 144, 145, 147, 150, 151, 154, 156, 158, 159, 161, 164, 168, 170, 172, 173, 175
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Comments

Indices of primes that appear in the Beatty sequence A001950, the Beatty sequence of A104457. - R. J. Mathar, Jan 22 2011

Examples

			Prime(1)=2 with k=1. Prime(3)=5 with k=2. Prime(4)=7 with k=3.
		

Crossrefs

Programs

A374883 Decimal expansion of phi*(2*phi + 1) (i.e., (7 + 3*sqrt(5))/2), where phi is the golden ratio.

Original entry on oeis.org

6, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2
Offset: 1

Views

Author

Marco Ripà, Jul 22 2024

Keywords

Comments

The author conjectures that this is the minimum volume of an axis-aligned bounding box which includes the shortest minimum-link circuit joining all the vertices of the cube {0,1}^3 (i.e., the closed polygonal chains consisting of exactly 6 edges visiting all the points of the set {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}).
In detail, such a circuit of 6 links is given by (1/2,1+phi,1/2)-((1-phi)/2,0,(1+phi)/2)-((phi+1)/2,0, (1-phi)/2)-(1/2,1+phi,1/2)-((phi+1)/2,0,(phi+1)/2)-((1-phi)/2,0,(1-phi)/2(1/2,1+phi,1/2), where phi := (1+sqrt(5))/2 (see A001622).
Then, phi*(2*phi + 1) = phi^2*(phi + 1) since phi - 1 = 1/phi.

Examples

			6.8541019662496845446137605030969...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.

Crossrefs

Programs

  • Mathematica
    RealDigits[3*GoldenRatio + 2, 10, 120][[1]] (* Amiram Eldar, Jul 23 2024 *)

Formula

Equals (7 + 3*sqrt(5))/2.
Equals phi^2*(phi + 1), where phi = (1 + sqrt(5))/2.
Equals A104457^2 = 2*A205769. - Hugo Pfoertner, Jul 22 2024
Equals A090550 + 1 = A134973 + 5. - Amiram Eldar, Jul 23 2024
Equals phi^4. - Stefano Spezia, May 28 2025
Previous Showing 31-40 of 61 results. Next