A384633
Expansion of (1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4).
Original entry on oeis.org
1, 1, 4, 8, 26, 62, 180, 460, 1276, 3356, 9136, 24320, 65688, 175752, 473136, 1268624, 3410448, 9152784, 24590912, 66021248, 177335712, 476185568, 1278917440, 3434413760, 9223575488, 24769781184, 66521273088, 178644161536, 479759612288, 1288410499200
Offset: 0
a(3)=8 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, 0-1-3-2, 0-1-3-4, 0-1-4-1, 0-1-4-3.
-
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[1,1]:
seq(a(n), n=0..32);
-
CoefficientList[Series[(1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]
A105963
Expansion of (1+4*x)/(1-x-3*x^2).
Original entry on oeis.org
1, 5, 8, 23, 47, 116, 257, 605, 1376, 3191, 7319, 16892, 38849, 89525, 206072, 474647, 1092863, 2516804, 5795393, 13345805, 30731984, 70769399, 162965351, 375273548, 864169601, 1989990245, 4582499048, 10552469783, 24299966927
Offset: 0
-
a:=[1,5];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
-
I:=[ 1,5]; [n le 2 select I[n] else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
-
seq(coeff(series((1+4*x)/(1-x-3*x^2), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 15 2020
-
CoefficientList[Series[(1+4x)/(1-x-3x^2), {x,0,40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
Table[Round[3^((n-1)/2)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 4*Fibonacci[n, 1/Sqrt[3]] )], {n,0,40}] (* G. C. Greubel, Jan 15 2020 *)
-
Vec((1+4*x)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
-
def A077952_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+4*x)/(1-x-3*x^2) ).list()
A077952_list(30) # G. C. Greubel, Jan 15 2020
Original entry on oeis.org
1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1
First few rows of the triangle are:
1;
2, 1;
1, 2, 1;
2, 1, 2, 1;
1, 2, 1, 2, 1;
2, 1, 2, 1, 2, 1;
...
-
T[n_, k_] := Mod[n-k, 2]+1; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2016 *)
A210789
Triangle of coefficients of polynomials u(n,x) jointly generated with A210790; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 8, 8, 5, 1, 5, 12, 18, 15, 8, 1, 6, 18, 32, 39, 28, 13, 1, 7, 24, 53, 77, 80, 51, 21, 1, 8, 32, 80, 142, 176, 160, 92, 34, 1, 9, 40, 116, 234, 352, 384, 312, 164, 55, 1, 10, 50, 160, 370, 632, 830, 812, 598, 290, 89, 1, 11, 60, 215
Offset: 1
First five rows:
1;
1, 1;
1, 2, 2;
1, 3, 4, 3;
1, 4, 8, 8, 5;
First three polynomials u(n,x):
1
1 + x
1 + 2x + 2x^2.
From _Philippe Deléham_, Mar 28 2012: (Start)
(1, 0, 0, -1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 2, 2, 0;
1, 3, 4, 3, 0;
1, 4, 8, 8, 5, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 0; c = 0; h = 2; p = -1; f = 0;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210789 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210790 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A006138 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A105476 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
A210790
Triangle of coefficients of polynomials v(n,x) jointly generated with A210789; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 4, 5, 5, 1, 4, 10, 10, 8, 1, 6, 14, 24, 20, 13, 1, 6, 21, 38, 52, 38, 21, 1, 8, 27, 65, 96, 109, 71, 34, 1, 8, 36, 92, 176, 224, 220, 130, 55, 1, 10, 44, 136, 280, 446, 500, 434, 235, 89, 1, 10, 55, 180, 440, 772, 1066, 1074, 839, 420, 144, 1
Offset: 1
First five rows:
1;
1, 2;
1, 2, 3;
1, 4, 5, 5;
1, 4, 10, 10, 8;
First three polynomials v(n,x):
1
1 + 2x
1 + 2x + 3x^2.
From _Philippe Deléham_, Mar 28 2012: (Start)
(1, 0, -1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 2, 3, 0;
1, 4, 5, 5, 0;
1, 4, 10, 10, 8, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 0; c = 0; h = 2; p = -1; f = 0;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210789 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210790 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A006138 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A105476 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
A384634
Expansion of (1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4).
Original entry on oeis.org
1, 2, 7, 16, 48, 120, 338, 880, 2412, 6392, 17316, 46240, 124640, 333920, 898168, 2409600, 6475408, 17382432, 46694512, 125377024, 336745984, 904275328, 2428594976, 6521881856, 17515179200, 47037120384, 126321412672, 339239675392, 911046599168, 2446649462272
Offset: 0
a(2)=7 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-1-4, 2-3-1, 2-3-2, 2-3-4.
-
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
seq(a(n), n=0..32);
-
CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]
A384635
Expansion of (1+3*x+2*x^2) / (1-6*x^2-4*x^3+2*x^4).
Original entry on oeis.org
1, 3, 8, 22, 58, 158, 420, 1136, 3036, 8180, 21920, 58952, 158168, 425032, 1140976, 3064960, 8229648, 22103600, 59355776, 159410272, 428089760, 1149677536, 3087468096, 8291603712, 22267339200, 59800139584, 160595513856, 431286986880, 1158238963072
Offset: 0
a(2)=8 because we have the walks 3-1-0, 3-1-2, 3-1-3. 3-1-4, 3-2-1, 3-2-3, 3-4-1, 3-4-3.
-
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
seq(a(n), n=0..32);
-
CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]
A140168
Triangle read by rows, iterates of X * [1,0,0,0,...]; where X = an infinite bidiagonal matrix with [2, -1, 2, -1, 2, ...] in the main diagonal, [1, 1, 1, ...] in the subdiagonal and rest zeros.
Original entry on oeis.org
1, 2, 1, 4, 1, 1, 8, 3, 3, 1, 16, 5, 9, 2, 1, 32, 11, 23, 7, 4, 1, 64, 21, 57, 16, 15, 3, 1, 128, 43, 135, 41, 46, 12, 5, 1, 256, 85, 313, 94, 133, 34, 22, 4, 1, 512, 171, 711, 219, 360, 99, 78, 18, 6, 1, 1024, 341, 1593, 492, 939, 261, 255, 60, 30, 5, 1, 2048, 683, 3527, 1101
Offset: 0
First few rows of the triangle:
1;
2, 1;
4, 1, 1;
8, 3, 3, 1;
16, 5, 9, 2, 1;
32, 11, 23, 7, 4, 1;
64, 21, 57, 16, 15, 3, 1;
128, 43, 135, 41, 46, 12, 5, 1;
256, 85, 313, 94, 133, 34, 22, 4, 1;
512, 171, 711, 219, 360, 99, 78, 18, 6, 1;
...
A238988
Triangle T(n,k), read by rows, given by (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, -1, 0, 2, 1, -1, -1, 1, 2, 1, 0, -1, -2, 1, 3, 1, 1, 0, -4, -2, 3, 3, 1, 1, 1, -2, -4, -2, 3, 4, 1, 0, 1, 3, -2, -9, -2, 6, 4, 1, -1, 0, 6, 3, -9, -9, 0, 6, 5, 1, -1, -1, 3, 6, 3, -9, -15, 0, 10, 5, 1, 0, -1, -4, 3, 18, 3, -24, -15, 5, 10, 6, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 1, 1;
-1, 0, 2, 1;
-1, -1, 1, 2, 1;
0, -1, -2, 1, 3, 1;
1, 0, -4, -2, 3, 3, 1;
1, 1, -2, -4, -2, 3, 4, 1;
0, 1, 3, -2, -9, -2, 6, 4, 1;
-1, 0, 6, 3, -9, -9, 0, 6, 5, 1;
-1, -1, 3, 6, 3, -9, -15, 0, 10, 5, 1;
0, -1, -4, 3, 18, 3, -24, -15, 5, 10, 6, 1;
1, 0, -8, -4, 18, 18, -6, -24, -20, 5, 15, 6, 1;
-
nmax=11; Flatten[CoefficientList[Series[CoefficientList[Series[(1 + x*y)/(1 - x + x^2 - x^2*y^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)
A384614
Expansion of (1+x+x^2) / (1-x-3*x^2).
Original entry on oeis.org
1, 2, 6, 12, 30, 66, 156, 354, 822, 1884, 4350, 10002, 23052, 53058, 122214, 281388, 648030, 1492194, 3436284, 7912866, 18221718, 41960316, 96625470, 222506418, 512382828, 1179902082, 2717050566, 6256756812, 14407908510, 33178178946, 76401904476, 175936441314
Offset: 0
a(2)=6 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-3-1, 2-3-2, 2-3-4.
-
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|0>, <0|1|0|1|0>, <0|1|1|0|1>, <0|0|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
seq(a(n), n=0..32);
-
CoefficientList[Series[(1+x+x^2) / (1-x-3*x^2), {x, 0, 32}], x]
Comments