cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A384633 Expansion of (1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4).

Original entry on oeis.org

1, 1, 4, 8, 26, 62, 180, 460, 1276, 3356, 9136, 24320, 65688, 175752, 473136, 1268624, 3410448, 9152784, 24590912, 66021248, 177335712, 476185568, 1278917440, 3434413760, 9223575488, 24769781184, 66521273088, 178644161536, 479759612288, 1288410499200
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 0 in the following graph:
2
/ \
0-1---3
\ /
4.
Also, for n>=1, the number of walks of length n-1 starting at vertex 1 in the same graph.

Examples

			a(3)=8 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, 0-1-3-2, 0-1-3-4, 0-1-4-1, 0-1-4-3.
		

Crossrefs

Cf. A384634 (vertices 2, 4), A384635 (vertex 3), A005824 (missing edge {1,3}), A105476 (missing edge {1,2}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[1,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x-2*x^2-2*x^3) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]

A105963 Expansion of (1+4*x)/(1-x-3*x^2).

Original entry on oeis.org

1, 5, 8, 23, 47, 116, 257, 605, 1376, 3191, 7319, 16892, 38849, 89525, 206072, 474647, 1092863, 2516804, 5795393, 13345805, 30731984, 70769399, 162965351, 375273548, 864169601, 1989990245, 4582499048, 10552469783, 24299966927
Offset: 0

Views

Author

Creighton Dement, Apr 28 2005

Keywords

Comments

Inversion of the periodic sequence with initial period (1,4,-1,-4). Sequence appears to have the property: for m > n, if s divides both a(n) and a(m) then s also divides a(2*m-n). E.g., 23 divides both a(3) = 23 and a(25) = 1989990245; 23 also divides a(2*25-3) = a(47) = 185518234185384428 = (2)^2*(23)*(131)*(15393149202239).
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[.5'k + .5k' + 2'kk' + 2e]

Crossrefs

Programs

  • GAP
    a:=[1,5];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[ 1,5]; [n le 2 select I[n] else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
    
  • Maple
    seq(coeff(series((1+4*x)/(1-x-3*x^2), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 15 2020
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-x-3x^2), {x,0,40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    Table[Round[3^((n-1)/2)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 4*Fibonacci[n, 1/Sqrt[3]] )], {n,0,40}] (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    Vec((1+4*x)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+4*x)/(1-x-3*x^2) ).list()
    A077952_list(30) # G. C. Greubel, Jan 15 2020
    

Formula

a(n) = A006130(n) + 4*A006130(n-1) = A006130(n+1) + A006130(n-1). - R. J. Mathar, Dec 12 2009
From Colin Barker, May 01 2019: (Start)
a(n) = (2^(-1-n)*((1-sqrt(13))^n*(-9+sqrt(13)) + (1+sqrt(13))^n*(9+sqrt(13)))) / sqrt(13).
a(n) = a(n-1) + 3*a(n-2) for n > 1. (End)
a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 4*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020

A131406 3*A128174 - 2*A000012(signed).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Jul 07 2007

Keywords

Comments

Row sums = A032766, congruent to {0,1} mod 3: (1, 3, 4, 6, 7, 9, 10,...).
Sequence array for the expansion of (1+2x)/(1-x^2). A105476 is an eigensequence. [From Paul Barry, Nov 03 2010]

Examples

			First few rows of the triangle are:
1;
2, 1;
1, 2, 1;
2, 1, 2, 1;
1, 2, 1, 2, 1;
2, 1, 2, 1, 2, 1;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Mod[n-k, 2]+1; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 17 2016 *)

Formula

3*A128174 - 2*A000012(signed + - + 1 by columns). (1, 2, 1, 2, 1,...) in every column.
Triangle T(n,k)=if(k<=n,(3-(-1)^(n-k))/2). [From Paul Barry, Nov 03 2010]

A210789 Triangle of coefficients of polynomials u(n,x) jointly generated with A210790; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 8, 8, 5, 1, 5, 12, 18, 15, 8, 1, 6, 18, 32, 39, 28, 13, 1, 7, 24, 53, 77, 80, 51, 21, 1, 8, 32, 80, 142, 176, 160, 92, 34, 1, 9, 40, 116, 234, 352, 384, 312, 164, 55, 1, 10, 50, 160, 370, 632, 830, 812, 598, 290, 89, 1, 11, 60, 215
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: 1,2,3,4,5,6,7,8,...
Row sums: A006138.
Alternating row sums: signed Fibonacci numbers.
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 28 2012

Examples

			First five rows:
  1;
  1, 1;
  1, 2, 2;
  1, 3, 4, 3;
  1, 4, 8, 8, 5;
First three polynomials u(n,x):
  1
  1 + x
  1 + 2x + 2x^2.
From _Philippe Deléham_, Mar 28 2012: (Start)
(1, 0, 0, -1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
  1;
  1, 0;
  1, 1, 0;
  1, 2, 2, 0;
  1, 3, 4, 3, 0;
  1, 4, 8, 8, 5, 0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 0; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210789 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210790 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A006138 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A105476 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 28 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1+x-y*x-y*x^2-y^2*x^2)/(1-y*x-y*x^2-x^2-y^2*x^2).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

A210790 Triangle of coefficients of polynomials v(n,x) jointly generated with A210789; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 5, 5, 1, 4, 10, 10, 8, 1, 6, 14, 24, 20, 13, 1, 6, 21, 38, 52, 38, 21, 1, 8, 27, 65, 96, 109, 71, 34, 1, 8, 36, 92, 176, 224, 220, 130, 55, 1, 10, 44, 136, 280, 446, 500, 434, 235, 89, 1, 10, 55, 180, 440, 772, 1066, 1074, 839, 420, 144, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with 1 and ends with F(n+1), where F=A000045 (Fibonacci numbers).
Column 2: 2,2,4,4,6,6,8,8,...
Row sums: A105476.
Alternating row sums: signed Fibonacci numbers.
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 28 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  2,  3;
  1,  4,  5,  5;
  1,  4, 10, 10,  8;
First three polynomials v(n,x):
  1
  1 + 2x
  1 + 2x + 3x^2.
From _Philippe Deléham_, Mar 28 2012: (Start)
(1, 0, -1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  2,  3,  0;
  1,  4,  5,  5,  0;
  1,  4, 10, 10,  8,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 0; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210789 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210790 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A006138 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A105476 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* [A000045] *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 28 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1+x-y*x-y^2*x^2)/(1-y*x-x^2-y*x^2-y^2*x^2).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

A384634 Expansion of (1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4).

Original entry on oeis.org

1, 2, 7, 16, 48, 120, 338, 880, 2412, 6392, 17316, 46240, 124640, 333920, 898168, 2409600, 6475408, 17382432, 46694512, 125377024, 336745984, 904275328, 2428594976, 6521881856, 17515179200, 47037120384, 126321412672, 339239675392, 911046599168, 2446649462272
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 2 in the following graph:
2
/ \
0-1---3
\ /
4.

Examples

			a(2)=7 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-1-4, 2-3-1, 2-3-2, 2-3-4.
		

Crossrefs

Cf. A384633 (vertices 0, 1), A384635 (vertex 3), A005824 (missing edge {1,3}), A105476 (missing edge {1,2}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]

A384635 Expansion of (1+3*x+2*x^2) / (1-6*x^2-4*x^3+2*x^4).

Original entry on oeis.org

1, 3, 8, 22, 58, 158, 420, 1136, 3036, 8180, 21920, 58952, 158168, 425032, 1140976, 3064960, 8229648, 22103600, 59355776, 159410272, 428089760, 1149677536, 3087468096, 8291603712, 22267339200, 59800139584, 160595513856, 431286986880, 1158238963072
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 3 in the following graph:
2
/ \
0-1---3
\ /
4.

Examples

			a(2)=8 because we have the walks 3-1-0, 3-1-2, 3-1-3. 3-1-4, 3-2-1, 3-2-3, 3-4-1, 3-4-3.
		

Crossrefs

Cf. A384633 (vertices 0, 1), A384634 (vertices 2, 4), A005824 (missing edge {1,3}), A105476 (missing edge {1,2}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]

A140168 Triangle read by rows, iterates of X * [1,0,0,0,...]; where X = an infinite bidiagonal matrix with [2, -1, 2, -1, 2, ...] in the main diagonal, [1, 1, 1, ...] in the subdiagonal and rest zeros.

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 8, 3, 3, 1, 16, 5, 9, 2, 1, 32, 11, 23, 7, 4, 1, 64, 21, 57, 16, 15, 3, 1, 128, 43, 135, 41, 46, 12, 5, 1, 256, 85, 313, 94, 133, 34, 22, 4, 1, 512, 171, 711, 219, 360, 99, 78, 18, 6, 1, 1024, 341, 1593, 492, 939, 261, 255, 60, 30, 5, 1, 2048, 683, 3527, 1101
Offset: 0

Views

Author

Gary W. Adamson, May 10 2008

Keywords

Comments

Row sums = A105476 starting (1, 3, 6, 15, 33, 78, 177, ...).

Examples

			First few rows of the triangle:
    1;
    2,   1;
    4,   1,   1;
    8,   3,   3,   1;
   16,   5,   9,   2,   1;
   32,  11,  23,   7,   4,  1;
   64,  21,  57,  16,  15,  3,  1;
  128,  43, 135,  41,  46, 12,  5,  1;
  256,  85, 313,  94, 133, 34, 22,  4, 1;
  512, 171, 711, 219, 360, 99, 78, 18, 6, 1;
  ...
		

Crossrefs

Cf. A105476.

Formula

Triangle read by rows, iterates of X * [1,0,0,0,...]; where X = an infinite bidiagonal matrix with [2, -1, 2, -1, 2, ...] in the main diagonal, [1, 1, 1, ...] in the subdiagonal and rest zeros.

A238988 Triangle T(n,k), read by rows, given by (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, -1, 0, 2, 1, -1, -1, 1, 2, 1, 0, -1, -2, 1, 3, 1, 1, 0, -4, -2, 3, 3, 1, 1, 1, -2, -4, -2, 3, 4, 1, 0, 1, 3, -2, -9, -2, 6, 4, 1, -1, 0, 6, 3, -9, -9, 0, 6, 5, 1, -1, -1, 3, 6, 3, -9, -15, 0, 10, 5, 1, 0, -1, -4, 3, 18, 3, -24, -15, 5, 10, 6, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 07 2014

Keywords

Comments

T(n,0) = T(n+1,1) = A010892(n), T(n+2,2) = T(n+3,3) = A099254(n), T(n+4,4) = T(n+5,5) = A128504(n).
Triangle T(n,k) = A101950(n - floor((k+1)/2),floor(k/2)).

Examples

			Triangle begins:
1;
1, 1;
0, 1, 1;
-1, 0, 2, 1;
-1, -1, 1, 2, 1;
0, -1, -2, 1, 3, 1;
1, 0, -4, -2, 3, 3, 1;
1, 1, -2, -4, -2, 3, 4, 1;
0, 1, 3, -2, -9, -2, 6, 4, 1;
-1, 0, 6, 3, -9, -9, 0, 6, 5, 1;
-1, -1, 3, 6, 3, -9, -15, 0, 10, 5, 1;
0, -1, -4, 3, 18, 3, -24, -15, 5, 10, 6, 1;
1, 0, -8, -4, 18, 18, -6, -24, -20, 5, 15, 6, 1;
		

Crossrefs

Programs

  • Mathematica
    nmax=11; Flatten[CoefficientList[Series[CoefficientList[Series[(1 + x*y)/(1 - x + x^2 - x^2*y^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)

Formula

G.f.: (1 + x*y)/(1 - x + x^2 - x^2*y^2).
T(n,k) = T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000007(n), A010892(n), A040000(n), A105476(n+1) for x = -1, 0, 1, 2 respectively.

A384614 Expansion of (1+x+x^2) / (1-x-3*x^2).

Original entry on oeis.org

1, 2, 6, 12, 30, 66, 156, 354, 822, 1884, 4350, 10002, 23052, 53058, 122214, 281388, 648030, 1492194, 3436284, 7912866, 18221718, 41960316, 96625470, 222506418, 512382828, 1179902082, 2717050566, 6256756812, 14407908510, 33178178946, 76401904476, 175936441314
Offset: 0

Views

Author

Sean A. Irvine, Jun 04 2025

Keywords

Comments

Number of walks of length n starting at vertex 2 in the following graph:
0-1
|\
| 2
|/
4-3.

Examples

			a(2)=6 because we have the walks 2-1-0, 2-1-2, 2-1-3, 2-3-1, 2-3-2, 2-3-4.
		

Crossrefs

Cf. A105476 (vertices 0, 1), A382683 (missing edge {4,3}).

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <1|0|1|1|0>, <0|1|0|1|0>, <0|1|1|0|1>, <0|0|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x+x^2) / (1-x-3*x^2), {x, 0, 32}], x]
Previous Showing 21-30 of 30 results.