cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A153053 Numbers j such that 2*j + 7 is not a prime.

Original entry on oeis.org

1, 4, 7, 9, 10, 13, 14, 16, 19, 21, 22, 24, 25, 28, 29, 31, 34, 35, 37, 39, 40, 42, 43, 44, 46, 49, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64, 67, 68, 69, 70, 73, 74, 76, 77, 79, 81, 82, 84, 85, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 112, 114, 115
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Let p = prime number, n = (p^2-7)/2 (mod p).
Comment: All numbers of the form 1+3k (k=0,1,2,...) are in this sequence, since 2(3k+1)+7 = 6k+9 is divisible by 3. Moreover, each of these numbers can be extended to an equidistant sequence of length k+1 and step 2k+3: This leads to the triangle T[k,m] = (3k+1)+(2k+3)*m, m=0,...,k, of elements of this sequence, because T[k,m]*2+7 = (2k+3)(2m+3) is never prime. The lines of the triangle end with m=k since the next term T[k,k+1] would be the same as the term in the following line, T[k+1,k]. (The formula T[k,m]=((2k+3)(2m+3)-7)/2 might also explain the comment involving "n=(p^2-7)/2".) [M. F. Hasler, Jun 16 2010]

Crossrefs

Programs

  • Magma
    [n: n in [1..120] | not IsPrime(2*n + 7)]; // Vincenzo Librandi, Nov 21 2012
  • Mathematica
    Select[Range[200], !PrimeQ[2# + 7] &] (* Vincenzo Librandi, Nov 21 2012 *)
  • PARI
    for(n=1,200,isprime(2*n+7)||print1(n", ")) \\ M. F. Hasler, Jun 16 2010
    

Extensions

Checked and extended by M. F. Hasler, Jun 16 2010

A182138 Irregular triangle T, read by rows, in which row n lists the distances between n and the two primes whose sum makes 2n in decreasing order (Goldbach conjecture).

Original entry on oeis.org

0, 0, 1, 2, 0, 1, 4, 0, 5, 3, 4, 2, 7, 3, 8, 6, 0, 7, 5, 1, 10, 6, 0, 9, 3, 8, 4, 2, 13, 3, 14, 12, 6, 0, 13, 11, 5, 1, 12, 0, 17, 9, 3, 16, 10, 8, 2, 19, 15, 9, 20, 18, 6, 0, 19, 17, 13, 7, 5, 22, 18, 12, 6, 21, 15, 3, 20, 16, 14, 10, 4, 25, 15, 9, 24, 18, 12, 0, 23, 17, 13, 11, 7, 1
Offset: 2

Views

Author

Jean COHEN, Apr 16 2012

Keywords

Comments

The Goldbach conjecture is that for any even integer 2n>=4, at least one pair of primes p and q exist such that p+q=2n. The present numbers listed here are the distances d between each prime and n, the half of the even integer 2n: d=n-p=q-n with p <= q.
See the link section for plots I added. - Jason Kimberley, Oct 04 2012
Each nonzero entry d of row n is coprime to n. For otherwise n+d would be composite. - Jason Kimberley, Oct 10 2012

Examples

			n=2, 2n=4, 4=2+2, p=q=2 -> d=0.
n=18, 2n=36, four prime pairs have a sum of 36: 5+31, 7+29, 13+23, 17+19, with the four distances d being 13=18-5=31-18, 11=18-7=29-18, 5=18-13=23-18, 1=18-17=19-18.
Triangle begins:
  0;
  0;
  1;
  2, 0;
  1;
  4, 0;
  5, 3;
  4, 2;
  7, 3;
  8, 6, 0;
		

Crossrefs

Cf. A045917 (row lengths), A047949 (first column), A047160 (last elements of rows).
Cf. A184995.

Programs

Formula

T(n,i) = n - A184995(n,i). - Jason Kimberley, Sep 25 2012

A023244 Primes that remain prime through 2 iterations of the function f(x) = 2x + 7.

Original entry on oeis.org

2, 5, 17, 23, 53, 83, 137, 197, 227, 257, 293, 317, 347, 383, 467, 593, 647, 677, 683, 797, 857, 953, 1163, 1193, 1217, 1607, 1877, 1907, 1913, 1997, 2063, 2207, 2237, 2843, 2903, 3023, 3257, 3323, 3557, 3947, 4133, 4253, 4517, 4583, 4643, 4967, 5087, 5387
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7 and 4*p+21 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206 and A105760.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime@ Range[10^3], Times @@ Boole@ PrimeQ@ NestList[2 # + 7 &, #, 2] > 0 &] (* Michael De Vlieger, Sep 12 2016 *)

Formula

a(n) == 5 (mod 6), for n > 1. - John Cerkan, Sep 12 2016

A088767 a(n) = A087697(n)/2.

Original entry on oeis.org

5, 6, 12, 15, 18, 27, 30, 33, 45, 48, 60, 72, 78, 87, 93, 102, 117, 132, 135, 138, 150, 162, 180, 183, 195, 213, 225, 228, 258, 282, 285, 297, 300, 303, 312, 327, 333, 342, 363, 375, 390, 402, 408, 423, 435, 480, 492, 495, 513, 528, 555, 558, 597, 612, 615, 642
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Comments

Numbers n such that 2*n-7 [A089192] and 2*n+7 [A105760] are both prime. [Vincenzo Librandi, Jul 10 2010]

Crossrefs

A154684 Triangle read by rows where T(m,n)=2mn + m + n - 3, 1<=n<=m.

Original entry on oeis.org

1, 4, 9, 7, 14, 21, 10, 19, 28, 37, 13, 24, 35, 46, 57, 16, 29, 42, 55, 68, 81, 19, 34, 49, 64, 79, 94, 109, 22, 39, 56, 73, 90, 107, 124, 141, 25, 44, 63, 82, 101, 120, 139, 158, 177, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 31, 54, 77, 100, 123, 146, 169
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

2*T(m,n)+7 = (2n+1)*(2m+1) is not prime.
First column: A016777; second column: A016897; third column: A008589; fourth column: A017173. - Vincenzo Librandi, Nov 19 2012

Examples

			Triangle begins:
1;
4,  9;
7,  14, 21;
10, 19, 28, 37;
13, 24, 35, 46, 57;
16, 29, 42, 55, 68,  81;
19, 34, 49, 64, 79,  94,  109;
22, 39, 56, 73, 90,  107, 124, 141;
25, 44, 63, 82, 101, 120, 139, 158, 177;
28, 49, 70, 91, 112, 133, 154, 175, 196, 217; etc.
		

Crossrefs

Programs

  • Magma
    [(2*n*k + n + k - 3): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 19 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 3; Table[t[n, k], {n, 20}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 19 2012 *)

A023275 Primes that remain prime through 3 iterations of function f(x) = 2x + 7.

Original entry on oeis.org

5, 23, 293, 593, 953, 2063, 3323, 4133, 4583, 8243, 8783, 9173, 9203, 14723, 15383, 16103, 16763, 18413, 19163, 20123, 25733, 29453, 37223, 38783, 39443, 40253, 41903, 42923, 44753, 45863, 49433, 51473, 54443, 54623, 54713, 57383, 58913, 63353, 66533
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7, 4*p+21 and 8*p+49 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206, A023244, and of A105760.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21) and IsPrime(8*n+49)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime@ Range@ 7000, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 7 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
    Select[Prime[Range[7000]],AllTrue[Rest[NestList[2#+7&,#,3]],PrimeQ]&] (* Harvey P. Dale, Dec 26 2022 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+7) && isprime(4*n+21) && isprime(8*n+49) \\ Charles R Greathouse IV, Sep 20 2016

Formula

a(n) == 23 (mod 30) for n > 1. - John Cerkan, Sep 16 2016

A023305 Primes that remain prime through 4 iterations of function f(x) = 2x + 7.

Original entry on oeis.org

293, 2063, 4583, 9203, 14723, 20123, 25733, 29453, 40253, 54713, 76103, 97523, 99833, 109433, 138683, 149993, 158243, 196853, 199403, 218873, 253103, 297623, 379913, 416963, 445463, 468113, 508073, 551963, 562403, 564713, 574703, 583733
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7, 4*p+21, 8*p+49 and 16*p+105 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206, A023244, A023275, and A105760.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21) and IsPrime(8*n+49) and IsPrime(16*n+105)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    rp4Q[n_]:=AllTrue[Rest[NestList[2#+7&,n,4]],PrimeQ]; Select[Prime[Range[ 50000]],rp4Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2020 *)

Formula

a(n) == 3 (mod 10). - John Cerkan, Oct 04 2016

A023333 Primes that remain prime through 5 iterations of function f(x) = 2x + 7.

Original entry on oeis.org

14723, 20123, 54713, 109433, 594653, 604883, 676493, 759953, 847103, 935843, 1035743, 1049603, 1079033, 1099823, 1222253, 1263323, 1499153, 1754033, 1835003, 1893173, 2017283, 2071493, 2099213, 2199653, 2895743, 2998313, 3389693, 4133663
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7, 4*p+21, 8*p+49, 16*p+105 and 32*p+217 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206, A023244, A023275, A023305, and A105760.

Programs

  • Magma
    [n: n in [1..5000000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21) and IsPrime(8*n+49) and IsPrime(16*n+105) and IsPrime(32*n+217)] // Vincenzo Librandi, Aug 04 2010

Formula

a(n) == 23 (mod 30). - John Cerkan, Oct 10 2016

A106086 Primes p such that 7*p + 2 and 2*p + 7 are primes.

Original entry on oeis.org

3, 5, 11, 23, 47, 53, 71, 131, 173, 197, 251, 257, 293, 317, 383, 461, 467, 587, 593, 683, 701, 773, 797, 863, 953, 983, 1031, 1103, 1151, 1187, 1193, 1217, 1301, 1307, 1373, 1451, 1481, 1607, 1721, 1787, 2111, 2207, 2237, 2333, 2633, 2903, 3023, 3221, 3347
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Cf. A105760 (2n+7 is prime), A105772 (7n+2 is prime).

Programs

  • Magma
    [p: p in PrimesUpTo(5000)|IsPrime(7*p+2) and IsPrime(2*p+7)] // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[2#+7]&&PrimeQ[7#+2]&]

Extensions

More terms from Rick L. Shepherd, Jan 29 2006

A107438 Primes p such that 7*p+2 or 2*p+7 is prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 41, 47, 53, 71, 83, 101, 107, 113, 131, 137, 167, 173, 191, 197, 227, 251, 257, 281, 293, 311, 317, 347, 353, 383, 401, 431, 461, 467, 503, 521, 563, 587, 593, 641, 647, 677, 683, 701, 743, 773, 797, 821, 827, 857, 863, 887, 911, 941, 947
Offset: 1

Views

Author

Zak Seidov, May 26 2005

Keywords

Crossrefs

Cf. A105760 Numbers n such that (2*n + 7) is prime; A105772 Numbers n such that (7*n + 2) is prime.

Programs

  • Mathematica
    Select[Prime[Range[220]], PrimeQ[2#+7]||PrimeQ[7#+2]&] (* Shepherd *)
  • PARI
    isok(n) = isprime(n) && (isprime(7*n+2) || isprime(2*n+7)); \\ Michel Marcus, Oct 06 2013

Extensions

Edited by Rick L. Shepherd, Feb 01 2006
Previous Showing 21-30 of 31 results. Next